至1945年,控制系统设计的频域方法,“波德图”(Bode plots)方法,已基本建立了。
在这同一时期,苏联科学家也在控制系统稳定性的频域分析方面取得了进展。1938年和1939年,全苏电工研究所的米哈依洛夫以柯西幅角原理为基础,发表论文给出了闭环控制系统稳定性的频域判别法。[21-23] 米哈依洛夫还提出了把自动调整系统环节按动态特性加以典型化来进行结构分析的问题。
米哈依洛夫有关稳定性频域判据的论文虽然正式发表较晚。但他的研究成果在1936年由苏联列宁共产主义青年团中央召开的青年学者科学家工作成果竞赛会上曾荣膺奖金。[23] 米哈依洛夫的方法现被称为“米哈依洛夫稳定判据”。[22-23]有些学者又将“乃奎斯特判据”称为“乃奎斯特-米哈依洛夫判据”[23-24]客观地讲,在频域稳定性判别研究中,乃奎斯特不仅在时间上领先,其工作也更完备。现在我们所使用的也主要是乃奎斯特的开环稳定判据。
除了偏差负反馈控制,扰动控制是另一种重要控制策略。第一个试图制造一个不反映被调量偏差,而反应扰动作用的调节器的人是庞赛来(Понселе)。他在1829年曾提出一种有关蒸汽机轴转速自动调节器的线路,利用的就是扰动控制的原理。可是由于当时蒸汽机本身不稳定,他的建议遭到了失败。采用扰动调节原理且在实际上能够工作的第一个自动调节器是1869年由契可列夫所发明的弧光灯光度调节器。这种调节器同庞赛来(В.Н.Чиколев)应用纯扰动的调节不同,它实际上建立了闭环,所以调节器在这里也影响系统的稳定(纯扰动补偿控制不影响系统稳定性)[21]。
2.3 根轨迹法的建立
在经典控制理论中,根轨迹法占有十分重要的地位。它同时域法,频域法可称是三分天下。美国电信工程师W.R.Evans在这里包打天下,他的两篇论文“Graphical Analysisof Control System, AIEE Trans. Part II,67(1948),pp.547-551.”和“Control System Synthesis by Root Locus Method, AIEE Trans. Part II,69(1950),pp.66-69”即已基本上建立起根轨迹法的完整理论。[18,19,27]
Evans所从事的是飞机导航和控制,其中涉及许多动态系统的稳定问题,因此其已经又回到70多年前Maxwell和Routh曾做过的特征方程的研究工作。但Evans用系统参数变化时特征方程的根变化轨迹来研究,开创了新的思维和研究方法。Evans方法一提出即受到人们的广泛重视,1954年,钱学森即在他的名著“工程控制论”中专用两节介绍这一方法,并将其成为Evans方法。[8,19]
2.4 脉冲控制理论的建立与发展
随着计算机技术的诞生和发展,脉冲控制理论也迅速发展起来。
在这方面首先作出重要贡献的是乃奎斯特和香农(Shannon)。乃氏首先证明把正弦信号从它的采样值复现出来,每周期至少必须进行两次采样。香农于1949年完全解决了这个问题。香农由此被成为信息论的创始人。
线性脉冲控制理论以线性差分方程为基础,线性差分方程理论在三、四十年代中已逐步发展起来。随着拉氏变换在微分方程中的应用,在差分方程中也开始加以应用。利用连续系统拉氏变换同离散系统拉氏变换的对应关系,奥尔登伯格(R.C.Oldenbourg)和萨托里厄斯(H.Sartorious)于1944年,崔普金(Tsypkin)于1948年分别提出了脉冲系统的稳定判据,即线性差分方程的所有特征根应位于单位圆内。由于离散拉氏变换式是超越函数,又提出了用保角变换将Z平面的单位圆内部转换到新的平面的左半面的方法,这样即可以使用Routh-Hurwitz判据,又可将连续系统分析的频域方法引入离散系统分析。
求得离散型频率特性后,乃氏稳定判据和其他一切研究线性系统的频率法都可应用,但由于Bode图的应用大受限制,频率法在离散系统研究中也受到限制。(库津(1961)曾试图用Bode图来表示离散型频率特性,但过于繁复而无法应用。)
在变换理论的研究方面,霍尔维兹(W.Hurewicz)于1947年迈出了第一步,他首先引进了一个变换用于对离散序列的处理。在此基础上,崔普金于1949年,拉格兹尼和扎德(J.R.Ragazzini 和 L.A. Zadeh)于1952年分别提出了和定义了Z变换方法,大大简化了运算步骤,并在此基础上发展起脉冲控制系统理论。
来源:飞翔化工(张家港)有限公司