2. 自动控制基本理论(经典部分)的发展简史
2.1 稳定性理论的早期发展
人们很早就开始关注稳定性的问题。牛顿可能是第一个关注动态系统稳定性的人。1687年,牛顿在他的《数学原理》中对围绕引力中心做圆周运动的质点进行了研究。他假设引力与质点到中心距离的 q 次方成正比。牛顿发现,假设q>-3 ,则在小的扰动后,质点仍将保留在原来的圆周轨道附近运动。而当 q≤-3时,质点将会偏离初始的轨道,或者按螺旋状的轨道离开中心趋向无穷远,或者将落在引力中心上[26]。
在牛顿引力理论建立之后,天文学家曾不断努力以图证明太阳系的稳定性。特别地,拉格朗日和拉普拉斯在这一问题上做了相当的努力。1773年,24岁的拉普拉斯“证明了行星到太阳的距离在一些微小的周期变化之内是不变的”。并因此成为法国科学院副院士[28]。虽然他们的论证今天看来并不严格,但他们的工作对后来李亚普诺夫的稳定性理论有很大的影响[26]。
直到十九世纪中期,稳定性理论仍集中在对保守系统研究上。主要是天文学的问题。在出现控制系统的镇定问题后,科学家们开始考虑非保守系统的稳定性问题。Clerk Maxwell是第一位利用特征方程的系数来判断系统稳定性的人[26]。
James Clerk Maxwell是第一个对反馈控制系统的稳定性进行系统分析并发表论文的人[8]。在他1868年的论文“论调节器”(Maxwell J C.On Governors. Proc. Royal Society of London,vol.16:270-283,1868)中,导出了调节器的微分方程,并在平衡点附近进行线性化处理,指出稳定性取决于特征方程的根是否具有负的实部。麦氏在论文中对三阶微分方程描述的Thomson s governor, Jenkin s governor 以及具有五阶微分方程的Maxwell s governor进行了研究,并给出了系统的稳定性条件。Maxwell的工作开创了控制理论研究的先河。[9][10]
同一时期在俄国,1872年И.А.维什聂格拉斯基(1831-1895)也对蒸汽机的稳定性问题进行了研究。И.А.维什聂格拉斯基的论文“论调整器的一般原理”1876年发表在法国科学院院报上。И.А.维什聂格拉斯基同样利用线性化方法简化问题,用线性微分方程描述由调整对象和调整器组成的系统。这使问题大大简化。1878年И.А.维什聂格拉斯基还对非线性继电器型调整器进行了研究。И.А.维什聂格拉斯基在苏联被视为自动调整理论的奠基人。[23]
Maxwell是一位天才的科学家,在许多方面都有极高的造诣。他同时还是物理学中电磁理论的创立人(见其论文“A dynamical theory of the electromagnetic field”,1864)。目前的研究表明,Maxwell事实上在1863年9月即已基本完成了其有关稳定性方面的研究工作。[10]
Maxwell在他的论文中还催促数学家们尽快地解决多项式的系数同多项式的根的关系的问题。由于五次以上的多项式没有直接的求根公式,这给判断高阶系统的稳定性代来了困难。[9]
约在1875年,Maxwell担任了剑桥Adams Prize的评奖委员。这项两年一次的奖授予在该委员会所选科学主题方面竟争的最佳论文。1877年的Adams Prize的主题是“运动的稳定性”。E.J.Routh在这项竟赛中以其跟据多项式的系数决定多项式在右半平面的根的数目的论文夺得桂冠(Routh E J.A Treatise on the Stability of Motion.London,U.K.:Macmillan,1877)。Routh的这一成果现在被称为劳斯判据。Routh工作的意义在于将当时各种有关稳定性的孤立的结论和非系统的结果统一起来,开始建立有关动态稳定性的系统理论。[26]
Edward John Routh 1831年1月20日出生在加拿大的魁北克。他父亲是一位在Waterloo服役的英国军官。Routh 11岁那年回到英国,在de Morgan指导下学习数学。在剑桥学习的毕业考试中,他获得第一名。并得到了“Senior Wrangler”的荣誉称号。(Clerk Maxwell排在了第二位。尽管Clerk Maxwell当时被称为最聪明的人。)毕业后Routh开始从事私人数学教师的工作。从1855年到1888年Routh教了600多名学生,其中有27位获得“SEnior Wrangler”称号。建立了无可匹敌的业绩。Routh于1907年6月7日去世,享年76岁。[25]
Routh之后大约二十年,1895年,瑞士数学家A. Hurwitz在不了解Routh工作的情况下,独立给出了跟据多项式的系数决定多项式的根是否都具有负实部的另一中方法(Hurwitz A. On the conditions under which an equation has only roots with negative real parts. Mathematische Annelen,vol.46:273-284,1895)。Hurwitz的条件同Routh的条件在本质上是一致的。[9]因此这一稳定性判据现在也被称为Routh-Hurwitz稳定性判据[1]。
来源:飞翔化工(张家港)有限公司