首页专业论文技术应用政策标准解决方案常用资料经验交流教育培训企业技术专家访谈电力期刊
您现在的位置:北极星电力网 > 技术频道 > 常用资料 > 汽轮机检修知识问答基础篇(3)

汽轮机检修知识问答基础篇(3)

北极星电力网技术频道    作者:佚名   2012/7/2 10:41:58   

37.汽机停机方式有几种,分别是什么?

汽机停机的方式可分为正常停机和故障停机。正常停机按停机过程参数的不同,可分为滑参数停机和定参数停机。故障停机分为一般故障停机和紧急故障停机,即破坏真空紧急停机。

38.汽机快速冷却有哪几种方式,快冷时应注意什么?

汽机快速冷却有以下几种方式:

1)蒸汽逆流冷却

2)蒸汽顺流冷却

3)压缩空气逆流快冷

4)压缩空气顺流快冷

快冷应注意以下几个方面问题:

1)快速冷却的安全评价

2)投冷却系统时间的选择

3)冷却介质的选择

4)顺流冷却和逆流冷却的选择

39.什么是甩负荷试验?

甩负荷试验是在汽轮发电机并网带负荷情况下,突然拉掉发电机主断路器,使发电机与电力系统解列,观察机组的转速与调速系统各主要部件在过渡过程中的动作情况,从而判断调速系统的动态稳定性的实验。

甩负荷试验应在调速系统运行正常,锅炉和电气设备运行情况良好,各类安全门调试动作可靠的条件下进行。甩负荷试验,一般按甩负荷的1/2、3/4及全负荷3个等级进行。甩额定负荷的1/2、3/4负荷实验合格后,才可以进行甩全负荷实验。

40.简述紧急故障停机的步骤。

(1)手打危急保安器,检查并确认自动主汽门、调节汽门、抽汽逆止门已关闭。

(2)投入启动油泵和交流润滑油泵向轴承供油,调整氢压和密封油压。

(3)需破坏真空的紧急停机(即前面介绍需紧急停机的1~13),应停止抽气器并打开真空破坏门,必要时给发电机加上励磁。

(4)当因进水紧急停机时,打开汽轮机的全部疏水门,并一直向轴封供汽,直至转子静止。

(5)注意转子惰走情况。

41.汽轮机发生哪些情况需要紧急停机?

发生以下情况:

1)汽机主油箱油位下降到报警值,补救无效;

2)汽轮发电机组任一轴承断油;

3)汽轮发电机组任一轴承回油温度超过允许值且轴瓦金属温度达95℃时;

4)汽轮发电机组及其油系统着火无法扑灭;

5)轴封冒火花;

6)汽机内部出现金属撞击声;

7)主汽或再热器温3分钟内下降50℃及以上;

8)发生水冲击;

9)机组发生强烈振动;

10)汽机工况已达保护跳闸条件而保护拒动;

11)汽轮机任一缸中断进汽;

12)发生严重危及人身设备安全的紧急情况

42.汽轮机的停机过程有何特点?停机过程如何分类?

汽轮机的停机过程是启动的逆过程。在停机过程中汽轮发电机组的输出功率由运行工况降至零,与电网解列,主汽门关闭,其转速由于摩擦鼓风作用逐渐降至零。在停机过程中汽轮机的进汽量逐渐减小至零;高、中压级前的蒸汽参数逐步降低,其汽缸和转子等零件被逐渐冷却。

按停机过程中进汽参数变化的特点,可分为额定参数停机和滑参数停机。按停机的原因或目的可分正常停机和事故停机两大类。正常停机又可分为大修停机和调峰停机两种;事故停机分为一般事故停机和紧急事故停机两种。

大修停机后汽轮机要揭开汽缸进行检修,而揭开汽缸必须待汽缸金属温度降至100℃左右才能进行。因汽缸保温较好,靠停机后自然冷却,需要较长的时间。为了缩短冷却降温的时间,在降负荷过程中,采用逐步降低主蒸汽压力和温度的办法(即滑参数停机),进行强制冷却。

调峰停机是在电网负荷低谷期间,将某些机组停机备用,待电网负荷增大时,再将此机组启动。由于机组启动时间与冲转时汽缸最高金属温度有关:冲转前汽缸的金属温度愈高,启动时加热的温升量愈小,在热应力相同的条件下,启动所需的时间愈短。因此调峰停机应采用滑压停机,或额定参数停机,在降负荷过程中尽可能保持主蒸汽和再热蒸汽温度不变,使停机后汽缸的金属温度较高,以缩短下一次启动的时间,减小启动损失,提高调峰的机动性。

43.大修停机过程如何进行?有什么特点?

大修停机过程可明显的分为:降负荷;打闸停机与电网解列;转速逐渐降至零(惰走过程);停机后的处理四个阶段。为了使机组充分冷却,对于中间再热机组,或可以切换为单元制的机组,多采用滑参数停机。在降负荷过程中,可保持调节阀开度不变,逐步降低主蒸汽和再热蒸汽的温度,并相应降低主蒸汽压力,以保证蒸汽的过热度和排汽湿度在允许范围内。为了便于锅炉操作,蒸汽的降温和降压交替进行,并适当安排暖机,使转子中心孔的温度也按一定的速度降低,避免出现过大的热应力和负胀差。适时切换除氧器供汽和轴封供汽、停用高压加热器和一台给水泵、一台循环水泵。在尽可能低的负荷下,锅炉熄火,打闸停机与电网解列。在惰走过程中,随润滑油压降低,辅助润滑油泵应自动投入。适时停用主抽气器,使凝汽器真空为零时,转速为零,停止向轴封供汽,立即投入盘车设备,进行连续盘车,直至汽缸温度降至100℃。

44.大修停机后进行快速冷却可采用哪些冷却介质?强制冷却应注意哪些问题?

大修停机后,在惰走过程,可采用低温过热蒸汽进行冷却。在盘车过程,可采用空气冷却。

强制冷却应注意:设计合理的冷却系统,组织冷却汽流,使汽缸和转子均匀冷却;控制冷却介质的温度及流量,以控制金属的冷却速度不超过1℃∕min,使热应力在允许的范围内;要控制汽缸的内、外壁温差和上、下缸温差,使它们符合运行规程的有关规定,同时要避免出现负胀差。

45.与大修停机相比,调峰停机过程有何特点?应注意什么问题?

调峰停机是在电网低谷期间,某些机组停机;而当电网负荷增加时,再将这些机启动投入运行。由于启动前汽轮机的金属温度愈高,启动过程金属的温升量相应减小,启动速度可以加快。为了缩短下一次启动的时间,减少启停损失,提高电网调度的机动性,在调峰停机过程中,尽可能保持机组的金属温度在较高的水平。调峰停机的特点是:在降负荷过程中,或保持蒸汽参数为额定值,或采取滑压停机,尽可能保持主蒸汽和再热蒸汽温度不变;在尽可能高的负荷下打闸停机;在汽机打闸停机后,锅炉才能熄火;凝汽器内真空为零后,才能停止轴封供汽和轴封抽气,防止冷空气由轴封漏入汽缸。

调峰停机也应该严格控制机组降负荷速度;适时切换除氧器供汽和轴封供汽、停用高压加热器和给水泵、循环水泵;同时避免机组被过分冷却。

46.与正常停机相比,事故停机过程有何特点?一般事故停机与紧急事故停机有何差异?

事故停机过程的特点是:主汽门和调节阀迅速关闭,负荷瞬间降到零,机组与电网解列,进入惰走阶段。

一般事故停机与紧急事故停机的差异在于:打闸停机后,要不要立即破坏凝汽器的真空。一般事故,允许机组继续转动,不需立即破坏凝汽器真空。按正常停机的惰走过程,适时停主抽气器,转速降到零时,凝汽器真空也降至零,停止向轴封供汽,投入盘车装置进行盘车。而紧急事故停机打闸停机后,要立即破坏凝汽器的真空,以增加转子的摩擦鼓风作用,使转速迅速降至零。

47.紧急事故停机对机组有何不利影响?哪些事故必需实行紧急事故停机?

由于紧急事故停机破环凝汽器真空时,大量冷空气进入凝汽器,对凝汽器和低压缸迅速冷却,产生很大的“冷冲击”,会造成凝汽器铜管急剧收缩,使其胀口松动,产生泄漏。而且使低压缸和低压转子的热应力增大,有时还会诱发机组振动增大。

必需实行紧急事故停机的事故包括:(1)汽轮机的机械故障。机组振动突然超限;转子轴向位移超限;汽缸内有异常声音或动、静部分发生摩擦;轴承金属温度过高;严重超速等。(2)润滑油系统故障。润滑油压降至30~40kPa(表压),无法恢复;系统大量漏油,需停交流润滑油泵;油箱油位降至最低油位,可能影响正常供油;发电机密封油压降低,且低于氢压等。(3)重大災害。车间起火,无法补灭;发生破坏性地震等

48.何谓惰走曲线?测绘惰走曲线有何作用?

在停机的惰走过程中,转速随时间的变化的曲线,称为惰走曲线。惰走曲线反映转子的机械状态和主汽门、调节阀等的严密性,可以利用它进行上述问题的判断。如果惰走时间增长,则说明阀门严密性欠佳,有蒸汽漏入汽缸,对转子产生作用力;若惰走时间缩短,则说明动、静部分存在摩擦,或系统严密性不佳;若转速突降对应的转速偏高,则说明轴承润滑有故障或缺陷。

49.紧急事故停机与一般事故停机停机过程有何不同之处?

事故停机是在设备或系统出现异常、可能危及安全运行时,保护系统动作或操作员按动“停机”按钮,主汽门和调节阀快速关闭,机组瞬间降负荷至零,与电网解列,进入惰走阶段,使机组降速至零的停机过程。紧急事故停机与一般事故停机之间的差别是前者在主汽门关闭后,立即打开凝汽器的真空破坏阀,破坏凝汽器的真空。使汽缸内的压力瞬间升至大气压力,加大转子惰走过程的摩擦鼓风作用,迫使转速迅速降至零,以避免转子长时间转动,而使机组损坏或事故扩大。而一般事故停机,则无须在主汽门关闭后,立即破坏凝汽器的真空。

50.简述滑参数停机的主要操作。

(1)停机前的准备。试验高压辅助油泵、交直流润滑油泵、顶轴油泵及盘车装置电机;为轴封、除氧器和准备好低温汽源;并对法兰螺栓加热装置的管道进行暖管。

(2)减负荷。

1)带额定负荷的机组,先将负荷按规定速度降到80~85%或更多一些。

2)通知锅炉减弱燃烧降低蒸汽温度和压力(大概1℃/min的降温速度),同时逐渐将调节汽门全开,稳定运行一段时间。

3)待汽缸法兰温差减小后,按滑参数停机曲线分阶段(每一阶段的温降约为20~40℃)交替降温、降压、减负荷,直至负荷减至较低值。

(3)解列发电机停机和转子惰走

(4)盘车。当转子完全静止后,应立即投入盘车装置,防止转子产生热弯曲。

51.简述滑参数停机的注意事项。

(1)滑停时,最好保证蒸汽温度比该处金属温度低20~50℃为宜。过热度始终保持50℃,低于该值。开疏水门或旁路门。

(2)控制降温降压速度。新蒸汽平均降温速度为1~2℃/min,降压速度为19.7kPa/min,当蒸汽温度低于高压内上缸壁温30~40℃时,停止降温。

(3)不同负荷阶段降温降压速度不同。较高负荷时,可快些,低负荷时,降温降压应缓慢进行,以保证金属降温速度比较稳定。

(4)正确使用法兰螺栓加热装置,以减小法兰内外壁温差和汽轮机的胀差。因为法兰冷却的滞后会限制汽缸的收缩。

(5)减负荷应等到再热汽温接近主蒸汽温度时,再进行下一次的降压。防止滑停结束时,因再热蒸汽降温滞后于主蒸汽降温,使中压缸温度还较高。

(6)滑停时,不准做汽轮机的超速试验。因为新蒸汽参数较低,要进行超速试验就必须关小调节汽阀,提高压力,当压力提高后,就有可能使得新蒸汽的温度低于对应压力下的饱和温度。此时再开大汽阀做超速试验,就有可能有大量凝结水进入汽轮机造成水冲击。

52.真空下降的危害有哪些?

1)导致排汽压力升高,做功能力(焓降)减小,使机组出力减小。

2)排汽缸和轴承座受热膨胀,轴承负荷分配发生变化,机组产生振动。

3)凝汽器铜管受热膨胀产生松弛、变形、甚至断裂,造成凝汽器泄漏。

4)排汽容积减小,使末级产生脱流和旋涡。

5)若保持负荷不变,将使轴向推力增大和叶片过负荷。

53.真空下降的现象有哪些?

1)真空表指示下降;

2)低压缸排汽温度升高;

3)凝汽器端差明显增大;

4)凝结水过冷度增大;

5)在汽轮机调节汽门开度不变的情况下,负荷降低。

54.真空急剧下降的原因有哪些?如何处理?

1)循环水中断

(1)主要表征:凝汽器真空急剧降落;排汽温度显著升高;循环水泵电机电流和进出口压差到零。

(2)原因及处理:

①循环水泵出口压力、电机电流摆动,通常是循环水泵吸入水位过低、入口滤网脏堵所致,此时应尽快采取措施,提高水位或清除杂物。

②若循环水泵出口压力、电机电流大幅度下降则可能是循环泵本身故障引起。启动备用循环水泵,关闭事故泵的出水门;若两台泵均处于运行状态同时跳闸时,即使发现并未反转时,可强行合闸;无备用泵,应迅速将负荷降到零,打闸停机。

③循环水泵运行中出口误关,备用泵出口误开,造成循环水倒流,也会使真空急剧下降。若在未关死前及时发现,应设法恢复供水,根据真空情况紧急减负荷;若发现较晚,需不破坏真空紧急停机。

④循环水泵失电或跳闸。需不破坏真空紧急停机。

2)射水抽气器工作失常

若射水泵出口压力、电机电流同时到零,说明射水泵跳闸;若射水泵出口压力、电机电流下降,则是由于泵本身故障或水池水位过低。发生以上情况均应启动备用射水抽气器,水位过低时应补水至正常水位。

3)凝汽器满水

凝汽器在短时间内满水,一般是由于铜管泄漏严重(同时凝结水硬度增大),大量循环水进入汽侧或凝结水泵故障(出口压力和电机电流减小甚至到零)所致。处理方法是:立即开大水位调节阀并启动备用凝结水泵,必要时将凝结水排入地沟,直至水位恢复正常。

4)低压轴封供汽中断

轴封供汽中断的可能原因有:负荷降低时未及时调整轴封供汽压力使供汽压力降低;汽封系统进使轴封供汽中断;轴封压力调整器失灵,调节阀芯脱落。因此在机组负荷降低时,要及时调整轴封供汽压力为正常值;若是轴封压力调整器失灵应切换为手动,待修复后投入;若因轴封供汽带水造成,则应及时消除供汽带水。

5)真空系统管道严重漏气

真空系统漏入的大量空气,最终都汇集到凝汽器中,使传热热阻增大,真空异常下降。运行中真空管道严重漏气,可能是由于膨胀不均使管道破裂,或误开与真空系统连接的阀门所致。若是真空管道破裂漏气则应查漏补漏予以解决;若是误开阀门引起的,应及时关闭。

6)冬季运行时,利用限制凝汽器冷却水入口流量保持汽轮机排汽温度,致使冷却水流速过低而在冷却水出口管道上部形成汽塞,阻止冷却水的排出,也会导致真空急剧下降。

55.真空缓慢下降的原因有哪些?如何处理?

因为真空系统庞大,影响真空因素较多,所以最容易发生,查找原因也比较困难。引起真空缓慢下降的原因通常有:

1)循环水量不足

循环水不足表现在同一负荷下,凝汽器循环水进出口温差增大。找出循环水不足的原因,采取相应的方法进行处理。

2)凝汽器水位升高

导致凝汽器水位升高的原因可能有:凝结水泵入口汽化(凝结水泵电流减小)、铜管破裂(凝结水硬度增大)、软水门未关、备用凝结水泵的逆止门损坏(关备用泵的出口门后水位不再升高)等。处理方法分别为:启备用泵,停故障泵;关闭备用泵的出水门,更换逆止门;关补充水门;降低负荷停半面凝汽器,查漏堵管。

3)射水抽气器工作水温升高

工作水温升高,使抽汽室压力升高,降低了抽气器的效率。当发现水温升高时,应开启工业水补水,以降低工作水温。

4)真空系统管道及阀门不严密使空气漏入

真空系统是否漏入空气,可通过严密性试验来检查。此外,空气漏入真空系统,还表现为凝结水过冷度增加,凝汽器传热端差增大。

5)凝汽器内冷却水管结垢或脏污

其表象是:随着脏污日益严重,凝汽器传热端差也逐渐增大,抽气器抽出的空气混合物温度也随着增高。经真空严密性试验证明不是由于真空系统漏入空气而又有以上现象时就可确认凝汽器真空缓慢下降是由凝汽器表面脏污引起,应及时进行清洗。

6)冷却水温上升过高

通常发生在夏季,采用循环供水更容易出现这种情况。为保证凝汽器真空应适当增加循环水量。

56.汽轮机进水的主要征象有哪些?

1)汽轮机轴向位移、振动、胀差负值大;

2)上下缸温差≥43℃。

3)抽汽管上下温差大于报警值,抽汽管振动,有水击声和白色蒸汽冒出。

4)主蒸汽或再热蒸汽温度急剧下降。

5)主蒸汽或再热蒸汽管道振动,轴封有水击声,管道法兰、阀门、密封环、汽缸结合面和轴封处有白色湿蒸汽冒出。

6)推力瓦乌金温度和回油温度急剧增高。

7)加热器满水或汽包、凝汽器满水。

8)监视段压力异常升高,机组负荷骤然下降。

各机组发生水冲击的原因不同,上述象征不一定同时出现。

57.发生汽轮机进水时如何处理?

当机组发生水冲击事故时,应立即破坏真空紧急停机,密切监视推力瓦温度、回油温度、振动、轴向位移和机内声音,开启汽轮机本体及有关蒸汽管上的疏水门,注意转子惰走情况。停止后,立即投入盘车,注意盘车电流并测量大轴弯曲值。转子如果在停机过程中没有发现任何不正常情况,可小心谨慎地重新启动。若停机或再次启动有异常情况时,应开缸检查。

58.叶片断落的一般象征有哪些?

1)汽轮机内部或凝汽器内有突然的响声,伴随机组突然发生振动。

2)当叶片不对称脱落较多时,使转子不平衡,引起机组振动明显增大。

3)调节级围带飞脱堵在下一级静叶片上时,使通流部分堵塞,导致调节汽室压力升高。

4)低压末级叶片飞脱落入凝汽器内时,除了有较强的撞击声,且若打坏铜管,会使凝结水的硬度和导电率突增,热井水位增高,凝结水的过冷度增大。

5)若机组抽汽部位叶片断落,则叶片可能进入抽汽管。使抽汽逆止阀卡涩,或进入加热器使管子损坏,水位升高。

来源:北极星电力网整理
友情链接
北极星工程招聘网北极星电气招聘网北极星火电招聘网北极星风电招聘网北极星水电招聘网北极星环保招聘网北极星光伏招聘网北极星节能招聘网招标信息分类电子资料百年建筑网PLC编程培训

广告直拨:   媒体合作/投稿:陈女士 13693626116

关于北极星 | 广告服务 | 会员服务 | 媒体报道 | 营销方案 | 成功案例 | 招聘服务 | 加入我们 | 网站地图 | 联系我们 | 排行

京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案

网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号

Copyright © 2022 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有