超级电容器储能系统(SCES) 历经 3 代及数 10 年的发展,已形成电容量 0.5~1 000 F、工作电压 12~400 V、 最大放电电流 400~2 000 A 的系列产品,储能系统的最大储能量达到了 30 MJ。在电力系统中多用于短时间、 大功率的负载平滑和电能质量高峰值功率场合, 在电压跌落和瞬态干扰期间提高供电水平[14], [15]。
日本松下、EPCOS、NEC,美国 Maxwell、Powerstor、Evans,法国 SAFT,澳大利亚 Cap-xx 和韩国 NESS 等 公司的产品, 几乎占据了整个超级电容器市场。
2005 年,美国加利福尼亚州建造了 1 台 450kW 的超级电容器储能装置,用以减轻 950 kW 风力发电机组 向电网输送功率的波动。
2005 年, 由中国科学院电工所承担的“863”项目, 完成了用于光伏发电系统的 300 Wh/1 kW 超级电容器储能系统的研究开发工作。
文献[16]提出了一种将串、并联型超级电容器储能系统应用于基于异步发电机的风力发电系统的新思路,该储能系统可同时双向、 大范围、 快速调节有功功率和无功功率, 很好地改善了风电的电能质量和稳定性。
1.5 其它储能形式
除了上述的几种储能方式外, 在电力系统中还应用较多的储能方式,有抽水蓄能、压缩空气储能和氢燃料 电池储能等。
抽水蓄能装置(Pumped Hydro Storage)在现代电网中大多用来调峰, 在集中式发电中应用较多。受地理 条件限制,绝大多数风电场不具备建抽水蓄能电站的条件。
压缩空气储能(CAES)是一种调峰用燃气轮机,对于同样的电力输出,它所消耗的燃气要比常规燃气轮机 少 40%。100 MW 级燃气轮机技术成熟, 利用渠式超导热管技术可使系统的能量转换效率达到 90%。大容量 和复合化发电将进一步降低成本。 随着分布式能量系统的发展以及减小储气库容积和提高储气压力至 10~14 MPa 的需要,8~12 MW 微型压缩空气储能系统(micro-CAES)已成为研究热点[17]。
美国爱荷华州的 CAES 蓄能项目采用风能和低谷电组合来驱动压缩机组, 将空气压缩至地下含水层,发电 装机容量为 200 MW,风能发电装机容量为 100 MW。
氢燃料电池是将燃料的化学能直接转化为电能的装置。为了实现氢气作为能源载体的应用,必须解决氢的廉价制取、安全高效储运以及大规模应用这 3 个问题。未来氢能的广泛应用很可能改变风电场的职能, 风 电场可能成为大型的氢制造厂,为氢燃料电池电站及氢燃料电池汽车提供氢。目前,燃料电池价格还很昂贵,距离大规模应用还有很长的路要走。
2 各种储能技术在风力发电中的应用前景分析
在各种储能技术中, 抽水蓄能和压缩空气储能比较适用于电网调峰;电池储能和相变储能比较适用于中 小规模储能和用户需求侧管理; 超导电磁储能和飞轮储能比较适用于电网调频和电能质量保障; 超级电 容器储能比较适用于电动汽车储能和混合储能。图 1、图 2 是根据美国电力储能协会提供的资料给出的各 种储能技术的功率、能量和成本比较。


来源:《可再生能源》