1.2 超导储能系统
超导储能系统(SMES)利用由超导线制成的线圈,将电网供电励磁产生的磁场能量储存起来,需要时再将储存的能量送回电网。
超导储能技术的优点: ①可以长期无损耗储存能量, 能量返回效率很高; ②能量的释放速度快,功率输 送时无需能源形式的转换,响应速度快(ms 级), 转换效率高(>96%), 比容量(1~10kWh/kg) 和比功率(104~105 kW/kg) 大; ③采用 SMES 可调节电网电压、频率、有功和无功功率,可实现与电力系统 的实时大容量能量交换和功率补偿。 20 世纪 90 年代, 在 超导储能技术已被应用于风力发电系统[5], [6], [7]。
中国科学院电工研究所已研制出 1 MJ/0.5MW 的高温超导储能装置。清华大学、华中科技大学、华北电力 大学等都在开展超导储能装置的研究。
文献[5]采用电压偏差作为 SMES 有功控制信号,在改善风电场稳定性方面具有优良的性能。
SMES 的发展重点:基于高温超导涂层导体,研发适于液氮温区运行的 MJ 级系统;解决高场磁体绕组力 学支撑问题;与柔性输电技术相结合,进一步降低投资和运行成本; 结合实际系统探讨分布式 SMES 及其有效控制和保护策略。
1.3 蓄电池储能技术
蓄电池储能系统(Battery Energy Storage System,BESS)主要是利用电池正负极的氧化还原反应进行充放电,一般由电池、直—交逆变器、控制装置和辅助设备(安全、环境保护设备)等组成。目前, 蓄电池 储能系统在小型分布式发电中应用最为广泛。根据所使用化学物质的不同,蓄电池可以分为铅酸电池、镍镉电池、镍氢电池、锂离子电池、钠硫(NaS)电池、液流电池等[8],[9]。
(1)铅酸电池
铅酸电池应用在储能方面的历史较早, 技术较为成熟,并逐渐以密封型免维护产品为主,目前储能容量已达 20 MW。铅酸电池的能量密度适中,价格便宜,构造成本低,可靠性好,技术成熟,已广泛应用于电力 系统。基于密封阀控型的铅酸电池具有较高的运行可靠性,在环境影响上的劣势已不甚明显, 但运行数 年之后的报废电池的无害化处理和不能深度放电的问题, 使其应用受到一定限制。
(2)镍氢电池
与铅酸电池相比, 作为碱性电池的镍氢电池具有容量大、 结构坚固、 充放循环次数多的特点, 但价格较高。 镍氢电池是密封免维护电池, 不含铅、铬、汞等有毒物质,正常使用过程中不会产生任何有害物质。北京 2008 年奥运会使用的混合电动车大都采用镍氢蓄电池作为电源。镍氢电池的自放电速度明显大于镍镉电 池, 需要定期对它进行全充电。须注意的是,镍氢电池只有在小电流放电时才具有 80~90 kWh/kg 的高比 能量输出,在大电流放电高功率输出时, 其能量密度会降至 40kWh/kg 或更低。
(3)锂离子电池
锂离子电池比能量/比功率高、自放电小、环境友好, 但由于工艺和环境温度差异等因素的影响,系统指 标往往达不到单体水平,使用寿命仅是单体电池的几分之一,甚至十几分之一。大容量集成的技术难度和生产维护成本使这种电池在短期内很难在电力系统中规模化应用。
磷酸亚铁锂电池是最有前途的锂电池。 磷酸亚铁锂材料的单位价格不高, 其成本在几种电池材料中是最低的,而且对环境无污染。磷酸亚铁锂比其他材料的体积要大,成本低,适合大型储能系统。
(4)钠硫电池
钠硫和液流电池被视为新兴、高效、具广阔发展前景的大容量电力储能电池。目前钠硫和液流电池均已实 现商业化运作,MW 级钠硫和 100kW 级液流电池储能系统己步入试验示范阶段[10],[11]。
钠硫储能电池是在温度 300 ℃左右充放电的高温型储能电池,负极活性物质为金属钠,正极活性物质为液态硫。
迄今为止, 只有日本京瓷公司成功开发出钠硫储能电池系统。钠硫电池系统在电力系统和负荷侧成功应用 100 余套,总容量超过 100 MW,其中近 2/3 用于平滑负荷。
来源:《可再生能源》