3 短期负荷的预测实例
用卡尔曼滤波以及改进后的模型对武汉地区电力负荷进行预测实例计算。在实践中初始状态xk(0|0),Pk(0|0)很难准确掌握。但由于卡尔曼滤波在递推过程中不断用新的信息对状态进行修正,所以当滤波时间充分长时,状态初值xk(0|0)对xk(t+1|t)的影响将衰减至近于零,初始协方差阵Pk(0|0)对滤波估计协方差阵Pk(t+1|t)的影响也将衰减至于零。因此,滤波的初始条件可以近似确定。
每一次递推运算中,要先求出预测值xk(t+1|t),然后根据预测值计算出预测误差的方差Pk(t+1|t),由最佳滤波规则计算卡尔曼增益Kk(t+1),经过卡尔曼增益的误差补偿后获得最佳滤波值xk(t+1),再由预测方程计算负荷预测值。
其中温度参数在待预测天以前由历史数据获得,并对其进行滤波估计,而待预测天的温度则由当天的温度预报获得。
引入误差指标:
相对误差:

应用卡尔曼滤波模型以及改进后的模型对武汉地区的电力负荷进行实际预测,随意抽取某一天的预测结果及误差见下图(1)、(2)、(3)、(4)。




图1是该天24小时的卡尔曼滤波预测值与实际值的比较,图2是24点的卡尔曼滤波的预测误差,其平均绝对相对误差为3.43%,图3是用改进的算法计算该天24小时的负荷值与实际值的比较,图4为改进后的算法的24点的相对误差,其平均绝对相对误差为2.94%,由此可见,改进算法是有效的。
4 小结
本文运用卡尔曼滤波理论建立了短期负荷预测模型,并进行短期负荷预测,通过算例证实了卡尔曼滤波模型预测的可行性。同时针对负荷预测的特点,通过对卡尔曼滤波算法的改进,提高了预测的精度。
由于卡尔曼滤波器在递推过程中不断用新息对状态估计进行修正,所以卡尔曼滤波是渐进稳定的,当时间序列足够长时,初始状态的状态值、协方差阵对估计的影响都将衰减为零。所以卡尔曼滤波模型能够不断更新状态信息,获得比较准确的估计值。此方法不仅可以用于短期预测,同样可以用于超短期负荷预测。
来源:Huazhong University of Science & Technology, Wuhan