1、工艺原理描述:
石灰石浆液洗涤系统的化学性能可以用SO2的脱除效率和无结垢的运行程度表示。一个给定的系统的设计,必须考虑到它能在特定的O2和SO2气体浓度的范围内以及在由烟气、飞灰和补充所含杂质中来的氯或硫酸盐积聚的特定程度上运行。重要的化学设计变量有:磨碎的石灰石的性质、EHT的体积、浆液的含固量以及任选的工艺,如强制氧化、双回路洗涤等。其他变量有:液-气比(L/G)、石灰石利用率(或PH值)及可溶解的碱性添加剂、缓冲添加剂和氧化抑制剂/催化剂等的浓度。
石灰石的溶解
在洗涤塔和EHT内均会发生石灰石的溶解。最理想的状态是约有一半的石灰石能在洗涤塔内溶解,从而使SO2脱除率和PH值最大化但又防止CaSO3结垢。在实际中,洗涤塔已溶解的那部分是随未反应过的石灰石浆液的量而变化的。当有大量过剩石灰石时,几乎所有的溶解都发生在洗涤塔内。当过剩石灰石不多时,多数石灰石在EHT内溶解。
平衡
当有大量过剩石灰石或有一个巨大的EHT时,EHT内的溶液会与CaCO3平衡,如下式所示:
CaCO3(固)+2H→(Ca2+)+CO2+H20
aH + =K[(Ca2+)]0.5/PCO2 (0.5)
平衡时的PH值取决于已溶解的钙离子浓度以及溶液上面的CO2平衡分压。由于已溶解的钙因下式而还原,顾CaCL2的积聚趋向于给出较低的PH值:
CaSO4(固) ←→(Ca2+)+(SO4)2-
石灰石在EHT或罐中溶解所产生的CO2通常会被洗涤塔内的烟气从溶液中剥离出来。除非CO2蒸汽的压力大于1个大气压,否则几乎没有CO2会从EHT中释放出来。进入EHT的溶液也许已在烟气的条件(约0.1个大气压)达到SO2的饱和状态。当CaCO3在EHT内溶解时,CO2就积聚在EHT内的溶液中。这样,EHT内平衡的CO2会压就取决于石灰石溶解在EHT内的量。所吸收的SO2量以及每次通过洗涤塔所溶解的石灰石。因此,EHT出口的平衡PH值趋于较低值。这是由于较少的过剩石灰石(大部分溶解在EHT内了)、较低的液体循环速度或较高的SO2气体浓度(较高的make-per-pass)。Ca离子浓度和CO2会压的组合作用会导致EHT内的平衡PH值达到5.5~6.5。
PH值和过剩石灰石的影响
洗涤溶液的PH值常常是所脱除HSO3—-和SO3=浓度的一个直接指示器。由于溶液有与CaCO3固体想平衡的趋向:可能通过溶解,也可能通过结晶;因此HSO3—-的浓度大致上因这种平衡而与PH值相关联:
CaSO3(固)+H+←→Ca2++HSO3-
[HSO3- ]= K[H+]/[(Ca2+)]
由于系统内任何一点上的较低PH值总是给出较高的HSO3—,它会阻止水解反应,因而也叫降低了改进因子和SO2的脱除。
洗涤塔入口处的PH值也是一个过剩石灰石的显示器:高的PH值显示出更多的过剩CaCO3。当溶液通过洗涤塔时,PH值的下降取决于石灰石溶解并使溶液碱性得到补充的程度。有大量过剩CaCO3时,整个洗涤塔内保持较高的PH值和低的HSO3—浓度;而当过剩CaCO3不多时,PH值就下降,HSO3—浓度就增加,因为SO2被吸收了。在没有CaCO3不多时,CaSO3会溶解并使HSO3—的浓度更大:
CaSO3+SO2+H2O→Ca2++2HSO3—
一般,SO3=的浓度不是PH值的函数,因为它趋向于被平衡所控制:
CaSO3(固)←→Ca2++(SO3)2-
然而,在PH值较高时,CaSO3趋向于在洗涤塔内结晶,从而使SO3= 浓度较高;当PH值低时,CaSO3趋向于溶解,需要较低的(SO3)2-浓度。
CaSO3的结垢
亚硫酸盐固体产物CaSO3·1/2H2O的相对饱和度极大地取决于PH值,因为其溶解度受下列平衡的支配:
CaSO3+H+←→(Ca2+)+HSO3-
进入洗涤塔的溶液,其CaSO3应稍微有些过度饱和。当溶液通过洗涤塔时,因为SO2的吸收,HSO3-浓度增加了;因为CaSO3或CaCO3的溶解,(Ca2+)浓度增加了;但是PH值却下降了,因为SO2吸收成为HSO3-把H+加到溶液中去了。因此,离开洗涤塔的CaSO3的RS取决于PH值下降被CaCO3中和的程度。如只有少数CaCO3被溶解,CaSO3的RS会很大并产生CaSO3固体及洗涤塔的设计,这些条件可能会、也可能不会导致结垢。
Shawnee的运行情况显示:要使除雾器性能可靠,必须避免过剩的CaCO3(Head,1976)。过剩CaCO3的存在会导致CaSO3在除雾器内结晶从而产生一种“粘滞”的泥浆沉积层。在Shawnee,除雾器保持得很干净,其石灰石利用率大于85%。这一结果在于使用了Frendonia出产的优质石灰石。反应性较差或较粗的石头应该能使设备以较低的利用率可靠地运行。有一个潜在的问题是双回路洗涤中的高PH值回路中存在大量的未进行过反应的石灰石。
强制氧化的作用
向EHT注入空气而使亚硫酸盐完全氧化,或者作为烟气中较低的SO2/O2比例的结果而使亚硫酸盐完全氧化,常常能改进SO2的吸收(Borgwardt,1978)。氧化使溶液中重亚硫酸盐的浓度降低,从而因水解反应而使SO2通过液膜的扩散使以提高(Chang和Rochelle,1980);
SO2+H2O→H++HSO3-
这一点在PH值较低(4~5)及CaSO3固体导致较高的HSO3- 浓度时尤为真实。
脱硫
SO2的脱除直接与石灰石的利用率、粒径及洗涤塔内的固体浓度有关。相对较低的石灰石利用率、较细的粒子和较高的固体浓度有利SO2的脱除。EHT较大的体积也有助于脱硫。高的L/G比不仅会靠物理作用增加质量的传递,而且会靠降低时CaCO3溶解的需要和靠降低洗涤塔内重亚硫酸盐的浓度来提高脱硫效率。这些变量都会在洗涤塔内产生较高的PH值和较低的重亚硫酸盐的浓度,这两种现象会促使SO2通过水解反应以重亚硫酸盐的形式作液相扩散:
SO2+H2O←→H++HSO3-
碱性和缓冲添加剂能在不降低石灰石利用率的情况下提高脱硫效率。碱性添加剂会产生高浓度的已溶解硫酸盐,后者会通过下式所示的固/液平衡引起高浓度的亚硫酸盐(SO3=):
CaSO3(固)+SO4=←→CaSO4(固)+SO3=
亚硫酸盐和基本的缓冲核素(A-)都能与SO2反应,从而提高它作为重亚硫酸盐的液相扩散:
A-+SO2+H20←→HA+HSO3-
当SO2的吸收被控制在是由液膜扩散而不是由气膜扩散时,这些添加剂起到的作用最大。
双回路洗涤和其他工艺的选用会导致洗涤塔内较低的石灰石利用率,因此,当系统中的石灰石利用率给定时,它们会提高脱硫效率。
洗涤回路中的强制氧化可除去洗涤塔输入液中的已溶解重亚硫酸盐,从而提高脱硫效率。这也通过水解反应提高了质量传递。
在较低的SO2入口气体浓度情况下,脱硫效率往往较高。在较低SO2浓度时,由于水解反应以及亚硫酸盐的反应,往往通过液膜的扩散有较大的提高。在100~500PPM SO2的范围内,SO2的脱除受气膜扩散的控制。
对烟气、飞灰、补充水和碱性添加剂中的可溶盐类来说,它们会与氯发生强的相互作用并造成硫酸盐的积聚。在有可溶解的Na+、Mg++和CL-离子存在时,硫酸盐的积聚可由液体品质因素(LGF)得出:
LGF=Mg+++2 Na+ -2CL-
因此,在LGF正的范围内,较高的氯值趋向处降低溶液内硫酸盐的积聚以及它对SO2脱除的正面影响。
无结垢的运行
要进行无结垢的运行,EHT的设计和控制必须做到在回到洗涤塔或从洗涤塔流出的溶液中,均没有CaSO3或CaSO4过分的过度饱和。
相对较大的EHT体积和较高的固体浓度会降低储罐出口处的过度饱和,也相应会降低离开洗涤塔的过度饱和。固体浓度的增加会因为控制了洗涤塔的结晶而再一次降低洗涤塔的过度饱和。
低的石灰石利用率或石灰石细粒的蒙蔽会导致CaSO3在洗涤塔内的结垢,而反过来又会使CaSO3结晶,其化学计量式如下:
CaCO3(固)+SO2←→CaSO3(固)+CO2
洗涤塔内CaCO3适中的溶解导致合格的化学计量式:
CaCO3+2SO2+H2O←→(Ca2+)+2HSO3-+SO2
需要有较高的液---气比(L/G)来降低石膏(CaSO4·2H20)通过洗涤塔时其饱和度的增加。L/G比的增加降低了SO2 make-per-pass, 因而降低了CaCO3溶解的克分子/升数和硫酸盐的形成。
烟气中较低的O2/SO2比或一种有效氧化抑制剂(如硫代硫酸钠)的使用,由于会使固体的氧化率降到15~20%以下而防止石膏的结晶或结垢。在这些条件下,硫酸钙与CaSO3固体结晶成一个固溶体,而石膏的饱和度可远远小于1。
来源:互联网