近年来,风力发电成为福建省电力能源产业发展重点,截至2010年底,福建全省风电总装机容量55.77万千瓦。风力发电带动沿海经济发展的同时,也时常饱受台风侵扰之惑,给安全生产工作带来影响。
本文以福建大唐漳州六鳌风电场设备事故为案例,从技术手段和管理措施两个层面,详细阐述沿海地区如何加强和提高风电机组抗击台风的能力。
台风对风电场的影响特征包括极端风速、突变风向和非常湍流等,这些因素单独或共同作用往往使风电机组不同程度受损,如叶片因扭转刚度不够出现通透性裂纹或被撕裂;风向仪、尾翼被吹毁;偏航系统和变桨系统受损等,以及最严重的风电机组倒塔。
六鳌风电场设备损坏事故分析
六鳌风电场位于福建省漳浦县六鳌半岛东侧的海岸线地带,目前在役总装机容量为101.6兆瓦,总计85台风机。工程分三期开发,共用一个升压站集中控制。
2010年10月23日12时55分,强台风“鲇鱼”在福建漳浦县六鳌镇正面登陆,登陆时近中心最大风力13级(38米/秒),中心最大气压为970百帕,是2010年最强台风。
强台风“鲇鱼”的正面登陆造成六鳌风电场三期Z13号风机倒塔、Z10号风机叶片折断。造成一期两台箱变线圈短路烧损;二期两台风机轮毂进水,控制柜内元器件损坏;三期Z2、Z13号两台箱变绕组短路烧损。
事故原因分析:1.台风造成的瞬时风速、湍流强度和入流角超过受损风机的设计制造标准,是事故的直接原因。
依据相关设计制造标准,Z72-2000型风力发电机组可承受极端风速 (50年一遇3秒平均)为70米/秒,最大湍流强度为0.16,最大入流角为8°。
根据福建省气候中心的风速计算报告结果,在Z13号风机倒塔时段内瞬时计算风速(3秒钟平均)达70.2米/秒,湍流强度达0.3以上,超出了风机可承受的极端风速及湍流极大值;在Z10号风机叶片折断时段内湍流强度高达0.3以上,入流角20°以上,湍流强度和入流角均大大超出风机可承受的最大湍流强度和最大入流角。
2.台风造成箱变进水短路,导致风机失去电网电源,是事故扩大的原因。
强台风将三期Z2、Z13号两台箱变顶盖掀开,致使雨水进入,箱变发生短路。
Z13号风机叶片由于超强风速和高湍流带来的瞬时极大变桨扭矩超出变桨伺服电机尾部刹车所能承受的极限,被迫向工作位置(0°)变桨。当叶片向工作位置旋转后,风机变浆系统又自动动作对叶片进行收桨操作。由于Z13号箱变短路,Z13号风机失去电网电源,叶片收浆只能靠蓄电池提供控制动力。因持续大风及高湍流,叶片多次被吹至工作位置并反复收桨。叶片反复收浆,导致蓄电池电量耗尽,最终叶片无法收浆。由于此时风机处于空载状态,叶轮不断加速直至飞车,轮毂转速急剧上升造成风机其它部分(叶片及塔筒)载荷也随之急剧增大,叶片及塔筒螺栓承受载荷超出其设计载荷,最后导致风机倒塔、叶片断裂。
事故暴露的问题1.沿海地区的风电机组不具备抗强台风能力。
本次事故的Z72-2000型风机变桨制动力矩在设计时考虑50年一遇3秒钟平均70米/秒的极端风速情况和0.16的湍流强度,相对于强台风“鲇鱼”正面登陆带来的极端风速伴随的高湍流和大入流角,变桨制动力矩不足,制动策略不能满足抗强台风的要求。风电机组箱变顶盖与箱体的联接强度不够,抗台风能力不足,致使箱变顶盖被强台风掀开,雨水进入变压器及盘柜的电气元件,造成短路。
2.风电机组微观选址工作中部分计算结果与实际情况偏差较大。
六鳌三期风电机组微观选址时对局部区域的湍流强度分析计算结果与实际情况存在较大差别。根据湘电公司提供的六鳌三期风机安全性复核报告,微观选址的13个机位根据12个月的测风数据计算出的平均湍流强度为0.109,最大湍流强度为0.128,远小于此次台风登陆后实际的湍流强度(0.3以上),软件计算结果与实际不符。
来源:百度文库