从图纸上看Lha、LHc、接地都在端子排固定螺丝上,接地位置不正确,出现虚接地电阻增大使二次线圈开路。

附图:厂家设计图纸
4. 理论分析
电流互感器在实际运行中二次回路不允许开路,厂家设计图纸与实际接线存在严重缺陷,电流互感器的二次接地和控制器接地形成回路但不在一个共同接地点,两个接地点是通过开关外壳连通,而且接地点不牢靠造成虚接地,存在较大电阻的变化,甚至相当于互感器二次开路。为了进一步分析首先从磁路和感应电势两个方面论述:一、根据磁动势平衡公式I1N1-I2N2=I0N1可知,其一次电流I1产生的磁动势I1N1绝大部分被二次电流I2 产生的磁动势I2N2所抵消,所以总的磁动势I0N1很小,励磁电流(即空载电流)I0只有一次电流I1的百分之几。但是当二次侧开路时,I2=0,这时迫使I1N1 =I0N1,即I1 =I0,使I0突然增大为I1,而I1是一次电路的负荷电流,只受一次电路的负荷影响,而与互感器二次负荷的变化无关。由于I1 突然增大几十倍,即励磁磁动势I0N1突然增大几十倍,因此会产生严重后果。二、通常电流互感器与变压器的感应电势是相反的,变压器的一次电流的大小是有二次电流大小变化所决定的,相反也就是说电流互感器二次电流的大小是随一次电流变化的,即一次电流起主导作用,当电流互感器二次电阻较大产生变化也会影响二次电势,这是应为互感器二次回路是闭合的而在某一定值的一次电流作用下,感应二次电流的大小决定于二次回路中的阻抗,当二次阻抗大时二次电流就小,用于平衡二次电流的一次电流就小,激磁就增多二次电势就很高反之二次阻抗小时感应二次电流就大,一次电流中用于平衡二次的电流的部分就大,激磁就减少,则二次电势就低。总之,从以上两个方面叙说反映出电流互感器二次开路危害性,因此厂家的这种接地方式将造成电流互感器故障 其主要原因是互感其二次长期在运行中内阻的变化致使互感器铁芯磁通聚然饱和,使二次线圈两端感应出比原来大很多倍的高电压,导致二次线圈过热绝缘击穿,进而使得一、二次绝缘击穿短路,(由于互感器二次开路产生高电压长期发热,是绝缘受损坏)高压直接对地通过二次接线中间头绝缘薄弱处放电,(二次接线中间头应用外套塑料管等加强绝缘),而由于互感器的热稳定和动稳定只是在发生短路接地时,互感器所承受大电流引起电动力及热力作用导致互感器环氧树脂炸开,从炸开环氧树脂痕迹观察,环氧树脂内部有间隙和裂痕,也存在质量问题。这次事故主要原因是厂家二次线圈处于开路状态造成,此事故厂家应负直接责任。
5. 整改措施
用一个新电流互感器更换了发生运行事故损坏的电流互感器,将电流互感器的二次接线直接接到JX端子排上,解决了电流互感器接线存在接点的问题。

按照断路器的二次接线图,更换了符合标准的2.5平方毫米二次接地线(原为1平方毫米)。改变接地点的位置,用专用螺丝将接地线固定于机壳(原为通过端子排固定螺丝接地),解决了二次接线虚接和接地位置不正确的问题。
对断路器二次接线进行检查,将电流互感器接地点和复合控制器接地点改为同一接地点后可靠接地,解决断路器两点接地和电流互感器二次开路问题。
用1个新复合控制器更换了发生运行事故的断路器上的复合控制器,解决了复合控制器没有判定的问题。
用1个新电流互感器更换了1台没有安装投运的断路器上一个外观有缺陷的电流互感器。
检查了其余5台没有安装的断路器的电流互感器和二次接线,发现二次接线存在的问题和故障断路器的问题相同(除电流互感器二次接线有接点),处理办法见以上第5.2、5.3条。
参考文献
[1]孙成宝.配电技术手册. 中国电力出版社2005.05
[2]张绍贤.高压试验技术培训.水利电力出版社1990.05
来源:环球市场信息导报