
图4 负荷对内燃机排放的影响Fig.4 Influence of load on the emissions of internalcombustion engine
2.2.1 烟度
由图4看出负荷增加使得烟度和每循环进气量增加,过多的混合气体进入气缸,在缸内有限的容积内容易出现局部缺氧,混合气燃烧不完全,从而使得烟度升高。衡量内燃机烟度的主要成分是碳烟,因而碳烟的生成率决定了尾气排放中烟度的高低。导致尾气中烟度较高的原因有:
1)过量空气系数的影响
8300燃气内燃机的过量空气系数为1.0,采取文丘里管缸外机械预混合方式,理论上能够使得缸内气化气与空气混合均匀,然而气化气的成分不稳定,热值不断变化,在实际运行状况中容易出现局部混合气过浓或过稀的现象,在缺氧区域利于碳烟的生成。
2)燃烧室形状的影响
8300燃气内燃机采用浅盆形燃烧室,由于其不组织涡流,使得燃烧过程中生成的碳烟尚未经过后续燃烧即被排出缸外,增加了碳烟的排量。
2.2.2 NOx
无论是燃料的氮还是空气中的氮都是以无机物的形式存在,分子键能高,需要高温工作环境才能使得氮分子分解成氮原子。
高温、富氧、氧与氮在高温中的滞留时间是影响柴油机燃烧过程中NOx生成率大小的三要素[14]。
由图4看出,中低负荷时,随负荷的增加,循环进气量逐渐增多,使得生成NOx的三要素同时加强,必然导致NOx的生成率增加。在高负荷时尽管温度和高温滞留时间延长,但NOx生成率下降,原因在于氧浓度的下降制约了氮氧化物的生成速率。
2.2.3 CO
对于燃烧生物质气化气的内燃机,CO一部分来自混合气中尚未燃烧的CO;另一部分来自于燃料的不完全燃烧。
图4表明CO的含量较高,原因在于气化气中CO的含量达到15%~18%,因而在缸内燃烧过程中包括缝隙容积在内的部分未燃的CO增加了尾气中CO的含量。
在低负荷时由于混合气燃烧不完全,致使其中的部分混合气中的CO在未参加燃烧的情况下直接排出气缸;随着负荷的增大,缸内气体燃烧趋于完全,CO的生成率降低,中负荷时达到最低值;随着负荷的增大,CO的生成率呈现增大趋势,原因在于大负荷时缸内混合气的进气量较多,局部缺氧燃烧,导致部分混合气尚未能完全燃烧就排出气缸,从而增加了尾气中的CO含量。
2.2.4 HC
碳氢化合物包括混合气中的未燃或不能完全燃烧的烃类、气化气中焦油高温裂解的产物等。主要是由于缸内混合气的不完全燃烧造成的。由图4 看出在低负荷时由于缸内气体的不完全燃烧导致碳氢化合物的生成率增加,中负荷时缸内气体的燃烧较为完全致使碳氢化合物的含量下降,而在高负荷时过多的混合气进入气缸,使得缸内混合气局部缺氧,尚未完全燃烧即排出缸外,使得碳氢化合物的含量升高。
由上面的试验分析可以得出以下结论:
1)增大过量空气系数能有效抑制缸内缺氧的发生,切断碳烟生成的环境;采用球形、深盆形燃烧室能有效增加缸内的气体流动,使缸内燃烧成为紊流燃烧,火焰处于运动状态,从而尽量避免形成局部高温和局部缺氧,进而抑制碳烟的生成。
2)降低NOx浓度的措施,就是要切断NOx的滋生环境。增大空燃比,降低压缩比都能降低NOx的生成率。
3)由于气化气中的CO是尾气中CO的主要来源,使得缸内的混合气能够充分的燃烧是降低该部分CO的有效措施。
4)使缸内的混合气燃烧充分,气化气与空气均匀混合,精确控制空燃比,增加缸内的气流运动都是能够降低炭氢化合物的有效措施。
3 结 论
通过对燃烧生物质气化气的内燃机的特性分析发现,气化气组分本身的性质是决定内燃机运行特性的主要因素,同时内燃机本身的结构也具有重要影响。8300型内燃机燃用生物质燃气时的效率最高为30%左右,气缸内爆发压力低、排气温度高是导致燃气内燃机效率低下的主要原因;同时燃气内燃机采用非增压进气、燃烧过程中空燃比不稳定、混合气燃烧不完全也是导致热效率降低的重要原因。生物质气化气的固有成分使得气缸内混合气燃烧不完全,以及氢气对缸内燃烧的不利因素使得内燃机尾气中的污染物排放较高。
中国的燃气发动机通过采用增压、中冷等技术, 热效率能达到35%。国外先进机型通过采用电控混合、稀薄燃烧等闭环控制技术,热效率已达42%,甚至更高[15]。目前我国对于低热值燃气内燃机的研究尚处于起步阶段[16],通过以后的不断探索试验,期望能够在原有基础上不断提高改进,使得燃气内燃机在生物质气化发电中得到更为有效的应用。
[参 考 文 献]
[1] 袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[M].北京:化学工业出版社,2005:169-171.
[2] 盛建菊.生物质气化发电技术的进展[J].节能技术,2007,25(1):67-70.
[3] 阴秀丽,周肇秋,马隆龙,等.生物质气化发电技术现状分析[J].现代电力,2007,24(5):48-52.
[4] 任永志,崔亨哲,郭 军,等.生物质气化发电机组中内燃机的运行特性分析[J].可再生能源,2006,(2):19-22.
[5] Wu Chuangzhi, Yin Xiuli, Chen Ping, et al. A 5.5MWebiomass demonstration power plant via gasificationintegrated combined cycle[C]. The 3rd International GreenEnergy Conference,2007:188-196.
[6] 周龙保.内燃机学[M].北京:机械工业出版社,2006:20-25.
[7] 刘治中,许世海,姚如杰.液体燃料的性质及应用[M].北京:中国石化出版社,2000:178-204.
[8] 项友谦.燃气热力工程常用数据手册[M].北京:中国建筑工业出版社,2000:289-309.
[9] 王存磊,朱 磊,袁银南,等.氢气在内燃机上的应用及特点[J].拖拉机与农用运输车,2007,34(3):1-6.
[10] 吴创之.生物质燃气发电技术[J].可再生能源,2003,111(5):58-60.
[11] 陈 平.生物质流化床气化机理与工业应用研究[D].合肥:中国科学技术大学,2006.
[12] 高绪伟,李宗立,辛强之.8300 生物质气体发动机的开发及初步试验[J].山东内燃机,2002,72(2):72-75.
[13] 王令金.大型火花点火生物质气发电机组的研究开发[D].济南:山东大学,2006.
[14] 何学良,李疏松.内燃机燃烧学[M].北京:机械工业出版社,1990:440-466.
[15] 陈宜亮.燃气发动机的发展动向[J].山东内燃机,2004,82(4):4-7.
[16] 孟凡生,阴秀丽,蔡建渝,等.我国低热值燃气内燃机的研究现状[J].内燃机,2007,128(3):46-49.
来源:《农业工程学报》