
2 凸轮曲线修改对协调控制的影响
国华太电2×600 MW 超临界汽轮机由上海汽轮机有限公司(STC)与西门子西屋(SWPC)联合设计制造,为超临界、一次中间再热、单轴、三缸、四排汽凝汽式汽轮机,设计共有四个高压调节汽门(分别定义为GV1、GV2、GV3、GV4),在机组投产初期DEH 系统采用单阀控制,协调控制系统(CCS,coordination control system)采用滑压运行方式,在运行过程中(尤其在变负荷阶段)发现高压调门很容易进入设定的电凸轮曲线拐点区,调门一旦进入拐点区后变化速率非常快,加之电凸轮曲线没有经过试验验证,实际流量与初始设计值差别较大,高压调门来回大范围波动造成调节级压力波动很大。国华太电协调控制策略为锅炉主控制器调节主蒸汽压力,汽机主控制器调节机组负荷,以锅炉跟随(BF)为主的协调控制模式,调节级压力作为负荷参考信号(前馈信号)送到锅炉主控调节器参与主蒸汽压力调节,所以调节级压力是否稳定直接影响机组协调控制的稳定。为解决协调调节不稳定问题,公司组织成立技术攻关小组,通过实验逐步完善阀门电凸轮曲线参数,使之与实际流量基本吻合,最终解决了阀门摆动及协调调节不稳定问题。3 比例偏置修正原理在DEH 系统中另一个重要的函数为比例偏置修正函数,该函数在机组顺序阀控制时根据流量指令确定阀门的开启顺序及阀门重叠度。在喷嘴调节配汽中(即顺序阀控制时),阀门是按设计顺序依次开启的,国华太电DEH 系统逻辑组态由上海汽轮机有限公司自控中心提供,在做顺序阀切换试验时我们发现,阀门在交替过程中无重叠度,即前一调节汽门完全开启后,后续调节汽门才动作,这样就会形成图2(b)实线所示的波折形阀门行程—流量曲线,反映在调节系统静态特性线上,速度变动率同样是波折形曲线,这种情况对压力调节极为不利。所以,在前一调节汽门尚未完全开启,后续调节汽门必须提前开启,以补偿前一调节汽门的非线性特性,即得到图2(b)虚线所示的理想流量曲线。4 比例偏置修正函数对协调的影响前面已经说过,为适应调节起门静态特性曲线两端速度变动率大、中间平滑过渡的要求,通过配汽机构的非线性传动特性可以校正行程—流量特性曲线。但现在基本采用电凸轮曲线进行流量修正(在DEH 内部通过逻辑实现),怎样才能实现多个阀门依此开启时行程与流量特性接近为直线呢,确定合适的重叠度变得非常重要,如果重迭度偏小,将使局部区域的阀门速度变化很大,这种情况对节能有利,但是会造成调节的不稳定,同时对瓦温及轴承振动影响也很大。反过来,如果重叠度过大,局部速度变动率过小,这样除了不利于节能外,同样也不利于调节。这是因为重迭度增大显然增加了调节汽门的节流损失,同时流量特性也变得非线性。
对应阀门开启顺序及重叠度如图4 所示

图4 顺序阀模式下的阀门开启状态1
从图4 可以看出,阀门开启顺序依次为先开#3、#4高调门(此两阀门同时动作),然后是开#1 高调,最后是#2 高压调门(关闭时按相反顺序进行),阀门相互之间没有重叠度。通过试验发现,机组由单阀模式切换到顺序阀运行后,#2 轴瓦温度增高(最高达100℃左右,对机组安全运行已构成威胁),同时机前压力摆动大。后来我们
对阀门重叠度及阀门开启顺序进行了修改(如图5 所示),将阀门开启顺序修改为1、2-3-4 (即先开#1、#2高调,然后是#3 高调,最后再开#4 高压调门),这样一来既解决了主蒸汽压力波动过大问题,同时#2 轴承瓦温也下降了许多(最高达85℃)。由于从安全角度出发,同时受实验条件限制,我们的重叠度设置还没有达到理想状态,对机组的经济性运行有一定的负面影响。

图5 顺序阀模式下的阀门开启状态2
5 结论
通过修改流量特性曲线及比例偏置函数,解决了轴承温度偏高及阀门摆动等实际问题,为机组稳定及经济运行提供了保障,更为解决同类型问题提供了有益的方法和探索。但同时也应看到,由于受实验条件限制,我们的参数还有优化空间,使机组安全性与经济性达到和谐统一。
来源:互联网