对于PSR反激拓扑,不连续导通模式(DiscontinuousConductionMode,DCM)是首选的工作模式,因为它可以更好地调节输出。典型波形如图3所示。

图3DCM反激转换器波形
当PSRLED驱动器以恒定电压调节模式工作时,在电感器电流放电时间Tdis期间,输出电压和二极管正向电压降之和被反映至辅助线圈端。因为二极管正向电压降随着通过二极管的输出电流减少而减少,在二极管放电时间Tdis的末端,辅助线圈电压反映了输出电压。通过在二极管放电时间末端对辅助线圈电压进行采样,获得输出电压的信息。
当以恒定电流调节模式工作时,使用峰值漏极电流IPEAK和电感电流放电时间Tdis可以估算输出电流,因为在稳定状态下输出电流与二极管电流的平均值相同。采用飞兆半导体创新的TRUECURRENT?技术,可以精确控制恒定电流输出。
PSR拓扑的效率可以达到85%。作为一个例子,考虑8.4W的应用,LED驱动器的总功率损耗在85VAC输入时测得为1.32W。损耗的支出,最大来自于变压器,估计为0.55W,随后是缓冲电路(如图2所示,二极管与并联的电阻和电容串联,跨接在变压器初级线圈上),其损耗为0.31W,MOSFET的损耗为0.26W,以及输出整流和桥式整流器一起的0.20W损耗。
(2)变压器和缓冲电路通常是较主要的功率耗散组件,由于来自变压器的漏电感,因而需要缓冲电路来防止电压施压在MOSFET上,假如未注意到这两个设计方面,印刷线路板和输入EMI滤波器也可以成为显著的功率耗散来源。
总体1.32W损耗可能看起来并不是功率损耗的重要来源,但在一个低功率LED驱动器中,LED负载靠近驱动器,因而使设计发热的是总体负载功率加上驱动器损耗。热传递不会选择强制冷却气流,因而上面引用的示例必须使用能够从半导体和电气器件中高效传导8.4W功率的灯具,以便维持可靠性。假如散热解决方案不能够平衡这一功率并保持元件低温,那么,使用电解电容器会减少设计的平均无故障工作时间(MTTF)。
来源:电源网