4 典型应用电路的带宽
利用式(1)中的R1和R3电阻值,假设Cwiper=10pF,获得表l所列的带宽。实际触点电容在3~80 pF内,并与触点电阻、步长数、采用的IC工艺及电位器体系结构等有关。3~5 V供电、32至256步长的10 kΩ电位器的典型电容值为3~10 DF。
*注意,带宽与触点电容成反比。采用3 pF Cwiper,带宽频率将提高3.3倍对于视频等应用,这些带宽还是过低。
需要注意的是,这里分析基于的假设是:触点电容与电位器电阻并联,由此限制电位器的带宽。该方法是最直接的电位器使用方式,如果采用更复杂的电位器配置,可能会进一步限制带宽。因此,讨论提高带宽非常有必要,即使实际带宽未达到预期目的。
5 提高电路带宽
提高电路带宽最明显方法是选择较低阻值的数字电位器,例如,1 kΩ电位器,按比例调整R1和R2(1 kΩ电位器与10kΩ电位器相比,阻值减小10倍)。然而,低阻值数字电位器(1 kΩ)一般占用较大的裸片面积,意味着较高成本和较大封装尺寸,出于这一原因,1 kΩ电位器的实际应用非常有限。如果某一电位器能够满足设计要求,10kΩ电位器的带宽会随着电阻的减小而线性提高,例如,提高10倍(假设杂散触点电容无变化);或使用1 kQ电位器,设置Rl=2.49 kΩ,R3=6.49kΩ,触点电容为10 pF,电位器设在中间位置,可获得1.15MHz的—0.1 dB带宽,及7.6MHz的-3dB带宽。这比表l中的带宽提高10倍。
6 使用10 kΩ电位器,改变电路拓扑
与1kΩ电位器相比,选择5kΩ和10 kΩ电位器可能是更好的解决方案,可以获得更小封装的电位器,从中选择易失或非易失存储器,也有更多的数字接口(up/down、I2C、SPITM)以及调整步长(32、64、128、256等)可供选择。出于这一原因,设计实例选用10 kΩ端到端电阻的电位器。假设成本、体积、接口以及电位器调整步长等因素的限制,需使用10 kΩ端到端电阻电位器,这种情况下提高典型应用电路的带宽的方法是去掉电阻R1和R3,使用步长数多于该电路要求的电位器。例如,32步长电位器获得10%的调整范围,按照上述介绍,可以选择替换这一步长的电位器,而使用256步长电位器,去掉R4和R6,限制电位器的调整范围在达到要求衰减的编码65%~75%内。所使用的编码是从0.65×256 (使用166)到编码0.75×256(192)。该实例使用一个256步长的电位器;由于有限的编码将可用步长数限制在26,即10%的调整范围,仅用了256步长的10%。

来源:电源在线网