新技术的发展能把对电路整体布局至关重要的功率半导体和无源元件集成在一起,构成功能完善的基本模块,降低了通往负载路径上的电阻,从而降低了功耗并缩小了尺寸。利用基本模块组合起来的多相设计技术逐步得到推广。由于每相输出电流减小,可以采用较小的功率MOSFET和较小的电感器和电容器,这样也简化了设计。
市场上已出现的基本功率模块封装只有11mm×11mm大小,开关频率1MHz,级联多个模块和相关元件,可获得大于100A的工作电流,与其它采用分立式元件的电路相比,其效率提高了6%,功率损耗降低25%,器件尺寸缩小50%左右。
(3)利用软件设计电源
如今通信系统中,直流电压的品种不断增加,功率密度和集成度的提高亦增加了设计难度,传统的手工设计与验证已无法适应快速变化的市场需求,于是,电源辅助设计软件应运而生了。这些软件可指导元器件选择,并提供材料清单、电路仿真及热分析,缩短了电源设计的周期,提高了电源的性能。辅助设计软件可使用多种参数定制电源,包括输入及输出电压范围、最大输出电流等,引导设计人员进行器件选择,它包含完整的变压器设计,使用多种拓扑方法来综合电路,按成本或效率进行优化,并输出元件清单。
软件的另一个功能是通过仿真的方法评估模块电源的性能。它可以全面分析电源在稳定状态下的性能,可显示要探测的任何节点处的波形,并用精确的方法来计算效率。另外热分析可根据线路板定位、边缘温度和气流的方向及速度等环境参数给出一幅用不同颜色标记的曲线图,从而帮助设计人员掌握整个线路板在稳定状态条件下的热量分布情况。
二、对热点问题的探讨
当今市场对模块电源的性能提出了更高要求,如何顺应市场发展的潮流,业界需要考虑的不仅仅是设计与生产技术的进步,下面就普遍关心的热点问题进行探讨。
(1)散热
热性能是影响模块电源寿命的重要因素,应引起足够的重视。考察电源的热性能,必须通过测量电源的关键性发热元器件来验证冷却效率,而不能仅仅只是测量环境温度。使用自然冷却时,应该确保模块电源的顶部和底部有足够的通气孔,以形成冷却空气流,增加散热片并在空气中垂直排列可增大散热面积和效果。在使用风扇时,气流可迫使空气冷却,极大地减小热阻抗,还应使气流平行于散热片表面流动,对于一个长方形的模块电源,气流顺其长边吹,而散热片平行于短边,这样散热效果最好。
来源:电子工程世界