(2)软件实现自动保护控制。在负载端采样电压,通过单片机来查询负载电平的高低控制SG3525芯片的shutdown端口来控制输出,从而达到保护的目的。该方法简单,且为后续智能化过载保护的实现提供基础。通过对该电源电路进行方案论证,该系统的原理图如图4所示。

1.3 提高效率方法及解决方案
由于损耗主要来源于器件本身以及一些开关元件的寄生电阻和进行开关操作时的开关损耗,因此在设计电路时要尽量减少损耗元件的个数,选用耗能小的元件,采用比较理想的开关元件;并且变压器的选取和绕制也对效率有影响。
1.3.1 功放电路解决方案
为了降低损耗只能选用2个晶体管,并且要求它本身的导通压降很低,降低了损耗,并且开关速度很快,让开关在瞬间完成,才能够最大限度地降低开关损耗和开关噪声。
1.3.2 变压器解决方案
选用EI变压器,设置匝数比为10∶32,线径0.7mm,初级双线并绕,次级单线绕制,这样能最大限度地提高效率。
2 硬件设计
2.1 开关管的选取
由于是PWM芯片直接驱动,因此驱动电流不大,考虑到效率问题,选用IRF540。它是电压控制器件,要求驱动电流很低,并且开关速度很快,导通电阻很小,这样既减少了开关损耗,也降低了本身寄生电阻的损耗。
2.2 输入整流二极管的选取
由于集成整流桥用于整流滤波,易引起整流管过热,其输出电压过低,导致负载电压不稳。因此采用共阴极肖特基二极管取代。
2.3 输出整流二极管的选取
考虑到效率要求,选用了肖特基二极管,速度快且压降低。
2.4 变压器的绕制方法
选用EI变压器,工作频率为30kHz,计算匝伏比:N/V=Ton/(ΔB×Ae),原边绕组匝数:Np=Vinmin×(N/V),副边绕组匝数:N2=(Vo+Vd+Io×R)×(N/V),设置的匝数比为10∶32,线径0.7mm,初级双线并绕,次级单线绕制。该设计方法能最大限度地提高效率。
2.5 整流管的输出稳压
由于18V经整流滤波后达到25V,因此选用了耐压值为1000μF/50V的大电容来稳压。
来源:互联网