超级电容器储能系统主要由太阳能电池板,超级电容器,开关,DC-DC变换器,放电回路及检测控制电路几部分组成。图3为超级电容器储能系统的原理框图如图3所示。
4 控制器主回路及其工作原理
4.1 MPPT控制方法
光伏电池最大功率点控制方法有很多种,如CVT(恒压控制),电压扰动法(也称登山法),导纳增量法,二次插值法等,各有优缺点。本设计采用的是电压扰动法,此方法控制思路简单,容易实现,可实现对最大功率点跟踪的控制,提高系统的利用率。
电压扰动法的原理是通过将本次光伏方阵的输出功率和上次的相比较,来确定是增加还是减小光伏方阵工作电压来实现MPPT。如图4所示,若△P>0,说明光伏电池工作在峰值电压左侧,则需要继续增大工作电压,从左边向最大功率点靠近;若△P<0,则说明光伏电池工作在峰值电压右侧,需减小工作电压,从右侧向最大功率点靠近;若△P=0,则说明光伏电池正处于最大功率点附近,于是保持工作电压不变即可。
4.2 控制器主回路硬件的实现
图5为控制器主回路及控制电路框图,它采用脉宽调制的方法,通过控制开关管Q的开通状态将光伏电池的直流信号变换成一个可变占空比的脉冲信号,从而改变光伏电池的等效负载,进而达到MPPT功能。
图中充电主回路采用的是BUCK型降压电路,适合本试验用25 W光伏电池给13.5 V超级电容器组的独立光伏系统。BUCK变换器的工作原理是通过斩波形式将平均输出电压降低,通过调节占空比来达到调节光伏电池输出电压的目的,使其输出电压能够保持在最大功率点的电压处。工作过程中,开关管Q反复导通和截止,两种不同状态的切换,将光伏电池输出的直流电压转换为脉冲形式的电压,再经过L,C滤波,形成直流电压输出。
采用降压斩波电路作为MPPT控制的主回路,是考虑到降压斩波电路容易控制,完全可以实现最大功率跟踪功能。以本系统为例说明:系统选用25 W光伏电池,最大功率点电压为17.5 V。光伏电池电压受光照及温度的影响,即使是在恶劣的环境下S=200 W/m2,T=70℃,最大功率点电压也为14.4 V,大于13.5 V的超级电容器组,因此完全能够达到MPPT功能。
系统所用的单片机为Silicon公司生产的C8051F310单片机。C8051F310芯片是完全集成的混合信号片上系统型MCU芯片,具有高速、流水线结构的8051兼容的CIP-51内核(可达25 MIPS);全速,非侵入式的在系统调试接口(片内);真正10位200 kS/s的25通道单端/差分ADC;具有高精度可编程的24.5 MHz内部振荡器;16 kB可在系统编程的FLASH存储器,1 280 B片内RAM;硬件实现的SMBUS/I2C,增强型SPI串行接口和增强型UART;4个通用的16位定时器;具有5个捕捉,比较模块和看门狗定时器功能的可编程计数器/定时器电池(PCA),每个模块都可以独立地实现8位或16位脉宽调制功能;具有19个I/O端口(容许5 V输入);2.7~3.6 V的工作电压,70%的指令执行时间为一个或两个系统时间周期,具有扩展的中断系统,是一款功能强大,性价比高的芯片。
来源: