主要实现项:
A、电源与负荷结合,将辅助系统(空调、风机、门禁、消防、周界等)纳入控制范围;
B、任务程序化执行。
下面以第一代智能型站用电源交直流一体化系统说明其以系统技术研究站用电源的思想方法。
典型方案(以220/110kV电站为例)
110kV及以上电站宜按双重化配置方案,如下图:

方案解析:
(1)、容量设计:全站配置两组蓄电池和充电机,一般的110kV电站容量可按300AH/组设计,220kV电站500AH/组。
传统的站用电源配置方案中,通常一个110kV电站配置两组300AH蓄电池和两组充电机供变电运行负荷,通信设备由另两组独立的蓄电池(300AH/48V)和充电机供电,一些UPS也带有自己的蓄电池。但通过对变电站站用负荷的统计分析,我们得出:不是重要的通信枢纽站,没必要采用独立通信电源。一个普通的110kV电站正常直流负荷约为8A左右,通信设备主要是一台光端机,功率1千瓦,折算为110V约9A,正常供电,一台60A充电机已经完全满足全站运行要求,按双重化配置两台已经非常可靠。在全站失压事故下,事故照明、UPS等交流负荷切换为蓄电池供电,这部分负荷设计容量在30A(110V)左右,即使全站事故照明一起开,也可以满足重要负荷超过10小时的事故供电。另外,在一体化监控的智能平台上,我们可以对站用电源进行程序化控制,事故情况下,按预设轮次对负荷进行减载,保证事故供电最大利用率。
(2)通信电源解决方案:通信设备直接采用220V或110V电源模块,通信电源从两组直流母线直接拉两路专用馈线至通信机柜,并在通信柜进行两路电源自动切换。
目前通信设备一般采用48V电源,所以在一些直流一体供电方案中,采用了用DC/DC模块变换成48V供通信设备使用,但这种方案存在不足:
i技术上存在弱点。如果通信机房有多台通信设备,各通信设备采用支路带空气开关供电方式,存在DC/DC模块与分支开关配合问题,一回支线发生故障,DC/DC模块可能会比空气开关先动作,造成全部通信设备失压。
来源:互联网