首页专业论文技术应用政策标准解决方案常用资料经验交流教育培训企业技术专家访谈电力期刊
您现在的位置:北极星电力网 > 技术频道 > 经验交流 > 第四代核电站与中国核电的未来

第四代核电站与中国核电的未来

北极星电力网技术频道    作者:佚名   2012/4/17 10:46:19   

核电是世界三大支柱能源之一,具有清洁、安全、高效的特性。在20世纪末21世纪初的几年里,发生了对世界核电发展产生深远影响的三件大事:美国政府发起了第四代核电站的技术政策研究;俄罗斯总统普京在世界新千年峰会上,发出了推动世界核电发展的倡议;美国总统布什颁布了美国新的能源政策,把扩大核能作为国家能源政策的主要组成部分。

1999年6月,美国能源部(Department of Energy, DOE)核能、科学与技术办公室首次提出了第四代核电站(以下简称第四代核电)的倡议。2000年1月,DOE又发起、组织了由阿根廷、巴西、加拿大、法国、日本、韩国、南非、英国和美国等九个国家参加的高级政府代表会议,就开发第四代核电的国际合作问题进行了讨论,并在发展核电方面达成了十点共识,其基本思想是:全世界(特别是发展中国家)为社会发展和改善全球生态环境需要发展核电;第三代核电还需改进;发展核电必须提高其经济性和安全性,并且必须减少废物,防止核扩散;核电技术要同核燃料循环统一考虑。会议决定成立高级技术专家组,对细节问题作进一步研究,并提出推荐性意见。

同年5月,DOE又组织了近百名国内外专家就第四代核电的一般目标问题进行研讨,目的是选出一个或几个第四代核电的概念,以便进一步开展工作。2001年7月,上述九国成立了第四代核能系统国际论坛(Generation IV International Forum, GIF)并签署了协议。2002年9月19日至20日,GIF在东京召开了会议,参加国家除上述九国外,还增加了瑞士(2002年2月加盟)。会上10国对第四代核电站堆型的技术方向形成共识,即在2030年以前开发六种第四代核电站的新堆型。

核电站的分代标志

第一代(GEN-I)核电站是早期的原型堆电站,即1950年至1960年前期开发的轻水堆(light water reactors, LWR)核电站,如美国的希平港(Shipping Port)压水堆(pressurized-water reactor, PWR)、德累斯顿(Dresden)沸水堆(boiling water reactor, BWR)以及英国的镁诺克斯(Magnox)石墨气冷堆等。

第二代(GEN-Ⅱ)核电站是1960年后期到1990年前期在第一代核电站基础上开发建设的大型商用核电站,如LWR(PWR,BWR)、加拿大坎度堆(CANDU)、苏联的压水堆VVER/RBMK等。目前世界上的大多数核电站都属于第二代核电站。

第三代(GEN-Ⅲ)是指先进的轻水堆核电站,即1990年后期到2010年开始运行的核电站。第三代核电站采用标准化、最佳化设计和安全性更高的非能动安全系统,如先进的沸水堆(advanced boiling water reactors, ABWR)、系统80+(9system 80+)、AP600、AP1000、欧洲压水堆(European pressurized reactor, EPR)等。

第四代(GEN-Ⅳ)是待开发的核电站,其目标是到2030年达到实用化的程度,主要特征是经济性高(与天然气、火力发电站相当)、安全性好、废物产生量小,并能防止核扩散。

目前,全世界核电站每年发电量约为2500亿千瓦时,占世界总发电量的17%,其中法国核电已占全国总发电量的79%。截止2002年底,全世界正在运行的核电机组为444台,其中压水堆为262台,占59%,在建的50台核电机组中,压水堆为31台,占62%。因此,压水堆核电站是当前世界核电的主流堆型。

第四代核电站的开发目标

美国开发第四代核电站的初衷主要是防止核扩散,目标是开发出面向发展中国家的超长寿命堆芯的密闭型小型反应堆核电站。但是经过2000年5月的“国际工作小组”会议以及GIF在2000年8月的汉城会议和2001年3月的巴黎会议等,美国采纳了其他成员国的意见,决定开展概念更广的新一代核能系统的开发。第四代核电站的开发目标可分为四个方面。

1.核能的可持续发展 通过对核燃料的有效利用,实现提供持续生产能源的手段;实现核废物量的最少化,加强管理,减轻长期管理事务,保证公众健康,保护环境。

2.提高安全性、可靠性 确保更高的安全性及可靠性;大幅度降低堆芯损伤的概率及程度,并具有快速恢复反应堆运行的能力;取消在厂址外采取应急措施的必要性。

3. 提高经济性 发电成本优于其他能源;资金的风险水平能与其他能源相比。

4.防止核扩散 利用反应堆系统本身的特性,在商用核燃料循环中通过处理的材料,对于核扩散具有更高的防止性,保证难以用于核武器或被盗窃;为了评价核能的核不扩散性,DOE针对第四代核电站正在开发定量评价防止核扩散的方法。

现时的核反应堆温度大多在300度左右,而在这6种第四代和反应堆中,有4种温度可达800度以上,并在设计上考虑到产生的热收集来制氢。把核电和制氢联结在一起,便能够集核电和燃料电池两者的高效能和无污染于一身,是一个理想的能源模式。

第四代核电站的概念

DOE于2001年4月征集到了12个国家的94个第四代核电站反应堆系统,其中水冷堆28个,液态金属冷却堆32个,气冷堆17个,其他堆型17个。

2002年9月19日至20日在东京召开的GIF会议上,与会的10个国家在上述94个概念堆的基础上,一致同意开发以下六种第四代核电站概念堆系统。

气冷快堆系统

气冷快堆(gas-cooled fast reactor, GFR)系统是快中子谱氦冷反应堆,采用闭式燃料循环,燃料可选择复合陶瓷燃料。它采用直接循环氦气轮机发电,或采用其工艺热进行氢的热化学生产。通过综合利用快中子谱与锕系元素的完全再循环,GFR能将长寿命放射性废物的产生量降到最低。此外,其快中子谱还能利用现有的裂变材料和可转换材料(包括贫铀)。参考反应堆是288兆瓦的氦冷系统,出口温度为850℃。

铅合金液态金属冷却快堆系统

铅合金液态金属冷却快堆(lead-cooled fast reactor, LFR)系统是快中子谱铅(铅/铋共晶)液态金属冷却堆,采用闭式燃料循环,以实现可转换铀的有效转化,并控制锕系元素。燃料是含有可转换铀和超铀元素的金属或氮化物。

LFR系统的特点是可在一系列电厂额定功率中进行选择,例如LFR系统可以是一个1200兆瓦的大型整体电厂,也可以选择额定功率在300~400兆瓦的模块系统与一个换料间隔很长(15~20年)的50~100兆瓦的电池组的组合。LFR电池组是一个小型的工厂制造的交钥匙电厂,可满足市场上对小电网发电的需求。

熔盐反应堆系统

熔盐反应堆(molten salt reactor, MSR)系统是超热中子谱堆,燃料是钠、锆和氟化铀的循环液体混合物。熔盐燃料流过堆芯石墨通道,产生超热中子谱。MSR系统的液体燃料不需要制造燃料元件,并允许添加钚这样的锕系元素。锕系元素和大多数裂变产物在液态冷却剂中会形成氟化物。熔融的氟盐具有很好的传热特性,可降低对压力容器和管道的压力。参考电站的功率水平为1000兆瓦,冷却剂出口温度700~800℃,热效率高。

液态钠冷却快堆系统

液态钠冷却快堆(sodium-cooled fast reactor, SFR)系统是快中子谱钠冷堆,它采用可有效控制锕系元素及可转换铀的转化的闭式燃料循环。SFR系统主要用于管理高放射性废弃物,尤其在管理钚和其他锕系元素方面。该系统有两个主要方案:中等规模核电站,即功率为150~500兆瓦,燃料用铀-钚-次锕系元素-锆合金;中到大规模核电站,即功率为500~1 500兆瓦,使用铀-钚氧化物燃料。

该系统由于具有热响应时间长、冷却剂沸腾的裕度大、一回路系统在接近大气压下运行,并且该回路的放射性钠与电厂的水和蒸汽之间有中间钠系统等特点,因此安全性能好。

超高温气冷堆系统

超高温气冷堆(very high temperature reactor, VHTR)系统是一次通过式铀燃料循环的石墨慢化氦冷堆。该反应堆堆芯可以是棱柱块状堆芯(如日本的高温工程试验反应器HTTR),也可以是球床堆芯(如中国的高温气冷试验堆HTR-10)。

VHTR系统提供热量,堆芯出口温度为1 000℃,可为石油化工或其他行业生产氢或工艺热。该系统中也可加入发电设备,以满足热电联供的需要。此外,该系统在采用铀/钚燃料循环,使废物量最小化方面具有灵活性。参考堆采用600兆瓦堆芯。

超临界水冷堆系统

超临界水冷堆(super-critical water-cooled reactor, SCWR)系统是高温高压水冷堆,在水的热力学临界点(374℃,22.1兆帕)以上运行。超临界水冷却剂能使热效率提高到目前轻水堆的约1.3倍。该系统的特点是,冷却剂在反应堆中不改变状态,直接与能量转换设备相连接,因此可大大简化电厂配套设备。燃料为铀氧化物。堆芯设计有两个方案,即热中子谱和快中子谱。参考系统功率为1 700兆瓦,运行压力是25兆帕,反应堆出口温度为510~550℃。

中国核电的未来

1980年代初,中国核工业部确定了“热中子堆电站—快中子堆电站—聚变堆电站”三步走的核能发展战略。该战略符合核能发展规律,也符合世界核电发展趋势。中国发展核电的目的之一是为国民经济的可持续发展提供有力的能源支持。目前,中国核电发展已经走过了20年的路程,运行与在建的核电机组总容量已接近10吉瓦,核电发电量约占全国总发电量的2%左右,已形成了浙江秦山、广东大亚湾、江苏田湾三大核电基地,因此已具备了稳定发展的基础。

当前是中国核电发展的最关键时期,国家电力规划中已确定了“适度发展核电”的方针。有专家论证,到2050年,为保证满足发展国民经济对能源的需求,核电的装机容量至少需要达到120吉瓦。只发展热堆核电站,根本无法满足这一需求,因此,必须采用热堆电站与快堆电站“接力”的发展方式,才有可能实现这一目标。为此,快堆电站必须在2025年开始逐步取代热堆电站,才能保证核电发展的燃料供给。在这个框架下,热堆电站的可能发展规模为55吉瓦左右。

为适应2020年国民经济翻两番的宏伟目标,2003年初,中国政府提出:到2020年,核电装机容量将要达到36吉瓦左右,核电发电量将占全国总发电量的4%,国家将投入3 600亿元进行核电建设。由于核电站建设周期至少五年,因此,从现在开始到2015年,每年要开工建设2吉瓦核电机组。据专家估计,如果照这样的发展速度,到2035年,中国核电占全国总发电量的比例将会达到现在的世界平均水平(16%)。

面对第四代核电站,为实现中国核电发展的宏伟目标,有关专家对中国核电的发展提出了四点建议:当前要抓紧第二代核电站的建设,尽快掌握技术,实现国产化;抓紧第三代核电技术的自主开发;坚持并抓好快中子堆技术的研究开发;抓紧先进核燃料循环技术的研究开发。

近二三十年内,国际上将主要建设第三代核电站。中国应按国际上第三代核电技术的要求,以自主开发为主,引进先进技术,加强国际合作,在国际第三代核电技术发展中争得一定的地位。在2020年左右,中国应具备批量建设符合国际上第三代核电技术要求的核电站,使其成为中国在快堆电站规模发展之前核电市场的主要机型。

第四代核电中,达成共识的六种新型核电堆型中至少三种是快堆,由此可见由热堆电站向快堆电站过渡的态势。中国已开始快堆技术的开发研究,在国家“863计划”的支持下,中国的实验快堆正在加紧建设,预计在“十一五”初期即可建成并投入运行。专家建议,应加快大型快堆电站的开发,争取跨越式发展,力争2020年建成中等规模的原型快堆电站,并具备相应的闭合燃料循环能力,争取在2025年开工建设大型快堆示范电站,并在2030年后不久建设具有国际上第四代核电技术特点的商用核电站。

在发展核电技术的同时,也要发展与之相匹配的燃料循环技术。中国的乏燃料后处理技术已有一定基础,但总体上还比较薄弱,应从基础研究开始,进行先进燃料循环技术的研究开发。

专家们认为,面对第四代核电站,中国核电发展的首要工作是制定一个有权威的规划,从而决定发展规模和燃料循环方式,进而引出技术路线、堆型选择、国产化等一系列重大问题。核电项目是在这些重大问题业已决定的基础上的产物。只有具备了有权威的规划,核电才能有序地发展。

[1] 王传英,陈世齐.核科学与工程,2001,21(3):193

[2] 温鸿钧.核科学与工程,2003,23(2):103

[3] 汪胜国.国外核动力,2002,5:15

[4] 张森如.国外核动力,2002,6:2

[5] 哈琳译.国外核新闻,2003,1:15

[6] 李 译.国外核新闻,2003,6:7

[7] 顾忠茂,刘长欣,傅满昌. 核科技信息,2004,1:1

[8] 沈文权. 中国核工业,2004, 增刊:55

核电历史回顾和第三代先进堆型简析

摘 要 回顾了核电发展历史,阐述了第三代核电厂的发展背景和设计要求,简单分析了几种第三代先进堆型的设计特点。

关键词 第三代 核电厂 先进堆型

Abstract The paper looks back the development history of the nuclear power, explains the development background of the third generation nuclear power plant and design requirements, and analyzes the design characteristics of several typical third generation advanced reactor types. Key words Generation Nuclear Power Plant Advanced Reactor Types 1

`

从第一座核电站建成至今已有50年的历史,在经历了20世纪60年代末~80年代中期核电大发展以后,由于1979年美国三哩岛事件和1986年前苏联切尔诺贝利事件的影响,核电的发展在世界范围内受到严重的挫折。也正因为这些事件,给了人们对核电有更多的反思,并为21世纪迎来核电在更高水平上的发展奠定了坚实的基础。

20世纪50~60年代可视为核电发展早期。这时期核电主要集中在美、苏、英、法和加拿大少数几个国家中,西德和日本由于二次大战后巴黎协定禁止其在战后10年内进行核研究,因而核能技术应用起步较晚。这阶段发展的堆型可分为3种情况,

一是从军用生产堆或军用动力堆转型改造过来,

二是一些商用核电厂堆型的原型机组,

第三则是研究探索过程中建造的一些堆型。这阶段典型的核电机组堆型包括:英国和法国建造的一批“美诺克斯”天然铀石墨气冷堆(GCR),前苏联早期建造的轻水冷却石墨慢化堆(LGR),美国早期建造的压水堆(PWR)和沸水堆(BWR),加拿大早期建造的天然铀重水堆以及美国和前苏联早期建造的快中子增殖堆。

这一阶段建造的核电厂可称为第一代核电厂,这一代核电厂有以下一些共同点:

(1) 建于核电开发期,因此具有研究探索的试验原型堆性质。

(2) 设计比较粗糙,结构松散,尽管机组发电容量不大,一般在300 MW之内,但体积较大。

(3) 设计中没有系统、规范、科学的安全标准作为指导和准则,因而存在许多安全隐患。

(4) 发电成本较高。

目前,这一代核电厂基本已退役(约50台机组),这些早期开发、研究的堆型,有些成了第二代重点发展的商业核电厂堆型,如轻水堆(PWR,BWR)、改进型气冷堆(AGR)、高温气冷堆(HTGR)、CANDU重水堆和液态金属冷却快中子增殖堆(LMFBR),另有一些由于当时条件所限未能发展,但其设计思想已成为第三代甚至第四代先进堆的选用堆型,如采用自然循环方式和非能动安全的沸水堆(ESBWR)以及快中子堆和熔盐反应堆等。

目前正在运行的绝大部分商用核电厂划归为第二代核电厂,这一代核电厂主要是按照比较完备的核安全法规和标准以及确定论的方法考虑设计基准事故的要求而设计的。实际上,这种划分是相对的。它既是在第一代堆型(如20世纪60年代初投运的PWR电厂,英法等国的天然铀石墨气冷堆电厂)基础上的改进和发展,与现在的第三代核电厂的设计概念也有交叉。目前运行的许多核电厂,特别是三哩岛事件后设计的核电厂已进行了许多根本性的改进,考虑了许多严重事故的对策,也引入了一些非能动安全设计。因此,第二代核电厂只是一个包络的概念,而非绝对的划分。第二代核电厂主要有PWR、BWR、加拿大AECL开发的天然铀压力管式重水堆(CANDU堆)、前苏联开发的石墨水冷堆(LGR)、改进型气冷堆(AGR)和高温气冷堆(HTGR)以及钠冷快堆。由于切尔诺贝利事故,俄罗斯、乌克兰等国关闭了一批同堆型的LGR机组,对正在运行的13台LGR机组进行了相应的整治和改造,同时决定停止再建此堆型的核电厂。改进型气冷堆是在天然铀石墨气冷堆基础上改进而成,由于其经济竞争力差,英国也停止了该堆型的发展,并向第三代气冷堆——高温气冷堆方向发展。目前已建成的几座钠冷快堆核电机组由于一些技术问题未解决,大部分处于长期停闭状态。因此,目前运行和在建的第二代核电厂中占优势的堆型是PWR、BWR和重水堆,分别占目前总机组数的60%、19%和11%。由于三哩岛和切尔诺贝利事故的发生暴露了第二代核电厂设计中的一些根本性弱点,核电界在认真反思的基础上,提出了新的安全理念、安全方法和安全要求,开发了一批具有更高安全性、更好经济性的第三代堆型,并为了挑战核能发展面临的几方面问题(经济竞争力、核电安全性、核燃料利用率、核废物处理及核武器扩散),提出了将在21世纪30年代后发展的第四代核电概念和一些初选堆型。目前,一些第三代堆型在安全上、设计上已趋成熟,预计本世纪30年代以前将是第三代核电厂重点发展的时期,也是第三代核电厂和第二代核电厂并存的时期。

2 三哩岛和切尔诺贝利事故

2.1 事故简介 1979年3月28日,美国刚投产3个月的三哩岛核电厂2号机组发生轻水堆核电厂历史上最严重的事故。该事故是由丧失主给水(II类事件)引起的,由于经历一系列故障和人误的迭加(包括阀门误关闭辅助给水不可用,稳压器卸压阀卡开,操纵员关闭安注系统和所有主泵等)导致堆芯严重损坏,堆芯熔融物达数千吨,大量放射性裂变产物进入安全壳,一些放射性物质经由各种途径泄漏至环境,但释放到环境中的放射性物质由于安全壳的屏障作用相对较少。切尔诺贝利核电厂是原苏联1 000 MW的石墨慢化沸水冷却的压力管式反应堆型机组(LGR)。该堆型的设计中存在着明显的缺陷,特别是过慢化设计使它可能具有正的温度反应性系数和由于反应堆体积巨大(高7 m,直径12 m)使氙-135引起的不稳定性使该堆的控制变得很复杂。而很低的控制棒插入速度(0.4 m/s)使得紧急停堆系统难以跟踪快速瞬变。 这次事故是由4号机组年度计划停堆检修所作的一项试验触发的。试验过程中一系列违反技术规格书和运行规程的操作,如断开应急堆芯冷却系统、提升的控制棒数超出运行规程的限制、切断停堆保护信号、试验工况使反应堆积累大量氙毒、并使堆功率降到正温度反应性系数区域等。正的温度反应性系数导致功率上升,功率上升导致氙浓度降低,两者释放过大的正反应性使反应堆达到超瞬发临界,功率急剧上升导致反应堆瞬时毁坏,发生了核电历史上最严重的事故。事故除摧毁反应堆厂房外,还使大量的放射性物质向环境释放。

2.2 事故的教益

(1) 核电必须将核安全放在首位,这不但是为了保护公众和环境,也是为了保护核电投资者和核工业界自身。一旦发生类似事件,几十亿投资顷刻会化为灰烬,还需投入巨额资金处理善后工作。这两起事故使核电发展进入低潮期达20年之久,而且停止了美国B&W公司的PWR堆型和原苏联RBMK-1000堆型的继续建造和发展。

(2) 反映了确定论方法以及所采用的单一故障准则的局限性。第二代核电厂花费很大精力用于应对最大假想设计基准事故(如PWR失水事故),包括制定准则,设置安全设施层层设防。但两次事故表明,最严重的事故有时是由许多(非单一)小故障,包括单一故障未考虑的人误事件迭加引起的。因此,概率安全分析(PSA)作为确定论补充的必要性显得更为重要。

(3) 核电厂必须具有固有安全性,应尽量采用非能动安全设计。切尔诺贝利事件就是因为该堆型在低功率时有正反应性系数而缺乏固有安全性引发了可怕的功率“暴走”的超瞬发临界事故;而三哩岛事故则主要由于一系列能动装置的故障和人误而导致的。

(4) 新建核电厂设计除考虑设计基准事故外,还必须考虑严重事故对策。核电厂设计的安全水平必须提升,原来对第二代核电厂要求堆熔概率小于10-4/堆年已不适应核电发展对安全的要求,因为目前运行机组已近500台,按10-4/堆年要求意味着平均每20年就要发生一次堆熔事件,这是公众和环境不能接受的。因此必须考虑建立在新的安全理念基础上的新的堆型。新堆型必须在提升安全水平的基础上同时提升经济性能。

3 第三代先进轻水堆的设计要求

为了总结核电发展的经验和教训,进一步提高电站的安全性能和运行性能,同时提高电站的经济性,1983年开始,美国电力研究院(EPRI)在美国核管理委员会(NRC)支持下,经多年努力于1990年为第三代轻水堆核电厂制定了一个明确完整的用户要求文件(URD)。 考虑到统一的欧洲对能源市场的客观要求,进一步提高轻水堆的竞争力和改进公众及政府对核电的可接受性,欧洲主要电力公司编制了欧州用户要求文件(EUR),并于1994年颁布了第一版。EUR与URD结构上有差异,但主要内容上基本相似。EUR已用于法德合作的欧洲压水堆(EPR),欧洲非能动式压水堆(EPP)和欧洲简化沸水堆(ESBWR)核电厂的设计。除URD和EUR外,日本和韩国也分别制定了本国的用户要求文件JURD和KURD,总的来讲,这些要求文件的基本内容均参考并类似于URD。 中国核安全当局于2002年发布了核安全政策白皮书“新建核电厂设计中的几个重要安全问题的技术政策”,对我国新建核电厂设计一系列安全问题提出了与世界先进核电国家相类似的要求。

4 几种主要第三代先进堆型简析

按照URD和其它相关文件要求,近10年来世界主要核电国家开发了一系列第三代核电堆型,这些堆型按其设计特征可分为改进型和革新型两类。本文主要介绍和分析目前普遍关注的3种第三代核电堆型(AP-1000、EPR、ABWR)的设计特点。

4.1 AP1000

AP1000是美国西屋公司开发的一种双环路1117 MWe的第三代先进型PWR机组,它是1999年12月获得NRC设计许可证的AP600型机组设计逻辑上的延伸。AP1000尽可能保留AP600的设计,特别是高水平非能动安全系统的设计,并通过提高功率输出水平,降低发电成本。 AP1000具有以下一些设计特点:

(1) AP1000设计采用了既先进又成熟的技术,因此既具有先进性,又具有安全和可靠性,因为:

² AP1000反应堆采用西屋成熟的Model 314技术,该技术已成功用于比利时Doel和美国South Texas Project等核电厂。

² 采用了西屋先进的IFBA燃料组件,该组件已广泛用于西屋的PWR。

² 反应堆冷却剂泵采用全密封泵(屏蔽泵),该泵40多年来已有1300台以上的成功应用记录。

(2)采用非能动的安全系统,主要包括:

² 非能动堆芯冷却系统。该系统通过使用3个非能动水源(堆芯补水箱、安注箱和安全壳内换料水贮存箱)以及2套100%能力的非能动余热热交换器执行堆芯余热排出、安全注入和卸压功能。这一系统的设计取消了第二代PWR机组中一些系统(如应急给水系统、余热排出系统、安注系统等)上的许多泵,也使一些系统(如化容系统、设备冷却水系统、应急交流电源系统等)获得简化并部分降格为非安全相关系统。

² 非能动安全壳冷却系统。AP1000采用双层安全壳,内层是钢制安全壳。在事故情况下,钢制安全壳容器自身提供传热表面将热量从安全壳内导出,排入大气,以有效冷却安全壳,并使压力迅速下降。传热是通过两层安全壳间空气的自然循环,而空气的冷却则借助于靠重力从安全壳屏蔽厂房顶部水箱中流出的水的蒸发。由于该系统的设计取消了第二代PWR中的安全壳喷淋系统,原来由安全壳喷淋去除安全壳内放射性悬浮物和放射性碘的功能,在AP1000中是依靠沉淀和沉积等自然过程实现的。

² 主控室可滞留系统和安全壳隔离系统也通过非能动安全设计和设施实现其功能。

(3)反应堆冷却剂系统设计改进:

² 采用2台蒸汽发生器的双回路对称设计,该设计具有投资省、容易布置、占据空间少、运行可靠性高和便于维修等优点。 ? 压力容器下封头无贯穿孔,因此堆芯上平面以下无大的开孔,大大减少了失水事故和堆芯裸露的概率。此外,设计使压力容器外表面在发生堆熔事故时起到排出堆芯熔融物热量的作用,以阻止熔融物熔穿压力容器。

² 由于采用全密封的屏蔽泵,不需要第二代PWR普遍采用的冷却剂泵轴封设计,既消除了难以避免的轴封泄漏(小失水事故),也省去了为保证轴密封所用复杂的设计和设备。

² 蒸汽发生器采用西屋公司标准的F型技术,运行经验表明该型蒸汽发生器具有很高的运行可靠性,传热管堵塞率低于1根/台年。

² 对于同等功率水平的PWR,AP1000稳压器水容量增加50%,改善了其瞬态响应的能力。

(4)采用了先进的全数字化仪控系统设计,并将多年来人因研究成果用于整个仪控和主控室设计,改善了可运行性和减少运行差错的可能性。

(5) 设计改进大大简化了AP1000核电厂,减少了电厂的系统和设备。分析表明,与第二代PWR相比,阀门减少了50%,泵减少了35%,管道减少20%,加热通风和冷却设备减少20%,抗震建筑物体积减少45%,电缆减少30%。

(6) AP1000堆芯熔化概率为3×10-7/堆年,比现在的PWR电厂低2个数量级,而比URD要求也低1个多数量级。

(7) 由于设计简化,对称布置,以及大量的模块化设计,预计建造周期(从浇灌第一罐混凝土到堆芯燃料装载)只需36个月。(8)预计AP1000系列建造的第3台机组隔夜造价为1 100$/kW,而发电成本在3.6美分/kW以下。

4.2 欧洲压水堆(EPR)

EPR是法马通公司和西门子公司于1991年共同开发的,目前该项目纳入法马通ANP公司。 EPR属于第三代改进型PWR,它的性能设计目标是基于或高于法、德现有大型PWR核电厂所达到的最高水平,遵循EUR的相关要求,因此既有成熟性,也具有先进性。EPR主要设计性能特点有:

(1) EPR总体安全设计方案遵循法、德联合制定的“未来PWR核电厂通用安全方案的建议”,采用确定论方法与概率论方法相结合的双重策略:第一,在电厂设计时利用确定论设计基准,改进事故预防措施,减少严重事故的发生概率。第二,采用正确的处理措施,缓解严重事故的后果。由于设计中成功采用以上策略,使堆芯熔化概率降低到10-6/堆年以下,并能实现在发生严重事故时核电厂附近不需要采取人员撤离或迁移的场外应急响应措施。

(2) EPR机组的设计热功率为4 250 MWt,电功率为1 500~1 600 MWe,设计寿命60年,燃料组件241个,燃料活性段长度4 200 mm,燃料设计燃耗为60 000 MWD/tU,采用双层安全壳(一次安全壳为预应力混凝土,二次安全壳为钢筋混凝土)。

(3) 反应堆冷却剂系统主要部件体积大于现在运行的PWR机组。较大的压力容器可以容纳较大的堆芯,以降低功率密度,增加热工安全裕量;同时降低压力容器内壁处快中子注量率,延长压力容器使用寿命,加大稳压器和蒸汽发生器二次侧容积改善电厂对瞬态的响应能力。

(4) 核电厂重要安全系统及其支持系统(安全注入、应急给水、部件冷却、应急电源)设计有4个冗余系列,并分别安装在4个独立的区域,每个系列与反应堆冷却剂系统的一个环路相连。

应急堆芯冷却系统由4个非能动集水箱和4个高压/低压安注系统构成。安注系统使用安全壳内换料水贮存箱,并从反应堆冷却剂系统冷、热双端注入,避免了回流和热管段长期注入的现象。另外,在低压安注管线上装有热交换器,以使EPR电厂在设计基准事故下不需要使用喷淋系统。

应急给水系统由4个完全分离和独立的系列组成,每个系列由1个应急给水箱、1台应急给水泵和相应的管道、阀门组成,给水分别注入1台蒸汽发生器。各种正常和应急水源的冗余度和多样性保证二次侧排热的可靠性。

电厂设置4套供核岛在正常和应急情况下使用的独立安装的电源,而常规岛所有的电源独立安装在常规岛厂房内。4台应急柴油机在设计和制造中采用多重设备,以使其中的2台可作为另2台的备用,以保证一定的可靠性水平。

在二次侧排热能力完全丧失的罕见事故中,可通过安注系统在一回路以“给—排”方式排除一次侧的能量。

(5) EPR设计考虑了严重事故预防和缓解的手段和措施,其中包括:

² 依靠余热排出系统的可靠性,辅以稳压器卸压阀的卸压措施,防止高压堆芯熔化。EPR稳压器至少安装3个卸压通道,每个通道由2个安全阀组成,保证其超压保护的可靠性。卸压的同时,排除了安全壳直接加热的危险。

² 设计时考虑预防堆芯熔融物与混凝土相互作用以减少氢的产生量,并通过氢复合器和氢燃烧器减少氢在安全壳中积聚造成高载荷氢爆的危险。

² 尽量减少冷却熔穿压力容器的堆芯熔融物的喷淋水量,防止蒸汽爆炸危及安全壳的完整性。

² 在反应堆坑外设计了一大块空间(面积约150 m2)作为堆芯熔融物的扩散腔室,以防止堆芯熔融物与混凝土的相互作用。堆坑与扩散腔由高熔点材料覆盖的钢板通道相连。扩散腔室与安全壳内换料水贮存箱用泵相连,以便长时间淹没、冷却扩散的熔融物。另外,由喷淋系统组成的专用安全壳排热系统限制安全壳压力的增加。

² EPR采用圆筒状的双层安全壳,其中第一层安全壳设计压力为0.75 MPa,有足够的裕度包容严重事故的后果,上述设计也保证使安全壳的压力不超过设计压力。

² 利用保持负压的双层安全壳的环形空间,收集所有的泄漏物,防止任何密封(包括贯穿件密封)的旁路,保证尽量少的放射性物质释放到环境中去。

(6) 采用先进的全数字化仪控设计和主控室设计,保护系统为四重冗余结构,采用“2/4”逻辑,具有高的可靠性。

4.3 先进沸水堆

ABWR是目前唯一有运行电厂和经过运行考验的第三代先进型核电厂,其除了具有BWR的特点和优点,如直接循环、大的负空泡反应性系数、采用流量+控制棒调节功率方便、快捷外,还具有以下总体特征:

1) ABWR设计的重大改进之一是将原GE公司BWR安装在压力容器外侧的反应堆冷却剂再循环泵改为安装在压力容器内部的内置泵,实现了核蒸汽供应系统的一体化设计。该设计使得压力容器在堆芯部位以下无大口径管嘴,保证LOCA事故发生后无堆芯裸露风险,大大降低了堆芯熔化概率。

2) ABWR采用并改进了经验证的电机驱动和水力驱动相结合的电动—水力微动控制棒驱动系统(FMCRD),提高了正常运行反应性控制的精度和紧急停堆的快速、可靠性。

3) ABWR的应急堆芯冷却系统(ECCS)分3个区设置了3套独立的、冗余的、符合多样性要求的子系统,各区子系统配备独立的供电、控制保护以及其它支持系统,保证了事故条件下应急堆芯冷却系统抑制和缓解事故后果的可靠性和有效性。

4) ABWR带有弛压水池的抑压式安全壳设计能保证在发生失水事故或严重事故时,通过弛压水池的非能动式设计有效抑制安全壳内压力的上升,洗涤破口流量中夹带的裂变产物,并为ECCS系统提供重要的可靠水源。ABWR安全壳设计为缓解严重事故及其减轻放射性释放后果提供了重要的有效的保障。

5) ABWR的仪表和控制系统(I&C)采用全数字化技术和容错结构,有助于ABWR电站安全、高效、可靠运行。

6) ABWR采用控制栅元堆芯设计和运行方案,即在ABWR运行期间,仅由少部分固定的控制棒(一般少于总控制棒数的1/10)组成的一个控制棒组在堆芯内移动来补偿整个运行寿期内的反应性变化。该设计减少了由于控制棒组迭换和控制棒插入或抽出对功率分布的扰动,简化了运行,提高了运行的可靠性和安全性。

7) ABWR可采用通过改变流量的谱移控制运行方式,即在循环初期到中期降低堆芯流量,以使空泡份额增加,中子谱变“硬”,促使钚的生成和积累,而在循环末期,增加堆芯流量,空泡份额减少,使中子谱变“软”,促使已积累的钚“燃烧”,以获得可利用的反应性,从而增加燃料的利用率。

由于以上特点,ABWR核电厂具有较高的安全水平和经济竞争力,主要表现在:

(1) ABWR设计基本上能全面满足URD的主要要求。

(2) 燃料破损率低于10-5,保证了反应堆冷却剂中放射性水平很低,并使常规岛设备、厂房受污染的程度维持在很低水平。

(3) ABWR堆熔概率为1.6×10-7/堆年,安全壳失效概率为1.0×10-9/堆年,分别比URD的要求约低2个和3个数量级。

(4) 建造周期为48个月。当然,ABWR也具有BWR特有的弱点,特别是带有放射性的反应堆冷却剂形成的蒸汽直接进入常规岛,给常规岛设备和厂房带来一定的辐照影响,增加了运行时常规岛的屏蔽要求和维修时的辐射防护措施。(摘自核工业研究院 陈连发)

4月7日,记者获悉,中国核电高层近日先后出访芬兰和日本,对第三代核电技术的两大阵营——法玛通EPR和西屋AP1000进行秘密探访。而持续了一年半之久的中国核电招标最终花落谁家,不日即见分晓。显而易见的事实是,如果后者中标,日资即渗入到中国核电领域。今年2月,东芝公司已经斥资54亿美元购得西屋51%的股权。

中日关系专家刘军红认为:“目前日本政治倾向攻击性,东芝与政府间关系又非常默契。因此,中国如果选择西屋技术,将使中国核电安全面临不确定性。”

回想一下,当初建设三峡水电站的时候,日本是怎么做的手脚!日本提供的钢材全部为劣质钢材!幸亏被及时发现。

如果日本东芝控股的西屋公司中标中国核电建设项目,在核电控制系统做手脚是绝对可以预见的事情!对于设计的源程序等关键技术,不管是西屋公司还是法玛通都明确表示了是不会转让的!不转让源程序,留下后门是轻而易举的事,谁知道编译好的软件里有没有后门啊?通过反编译分析恐怕也很难发现吧。

软件的后门配合硬件控制芯片的后门(具无线信号接收功能),那这个核电站的安全就完全由别人掌控了。

再说,控制系统的软件大多是嵌入式软件,固化在硬件里,核电站的控制系统那么复杂,要查安全漏洞恐怕比大海捞针都难!

即使外方同意转让源程序,也要通过中方人员亲自核对编译,才谈得上一点安全性,但别人就不会留一手吗?所以呀,核电站应该立足自有技术,特别是核心的控制技术。不怕一万、只怕万一!核电站出事故,危害性太大。花那么多钱引进,没准就是埋在身边的定时炸弹!

不知大家看过电视剧《24hours》(反恐24小时第3季)没有?核电站控制系统被恐怖分子遥控掌握的可怖情景,应该还记忆犹新吧?虽然是电视剧,也并非天方夜谭,技术上是完全可能的。

以上从政治角度分析了引进国外核电技术的安全隐患,现在我们从核工程技术本身来分析分析:

1)法玛通EPR和西屋AP1000这2个所谓的3代技术,都是纸上谈兵,都没有可参考的成功营运的电站,哪怕是实验电站!

2)所谓的3代技术只是在2代的基础上作了些改进,安全性上并没有质的飞跃!一出事故,还是会出现灾难性的辐射泄露。

3)而4代核电技术具有主动安全性,即使控制系统完全失效,也不会出现辐射泄露事故。清华大学的高温气冷堆HTR就是这样的4代核电技术,而且HTR实验电站已经成功发电!

我就搞不清楚,为什么某些高官就那么相信国外的纸上谈兵的技术,而不愿相信中国人自己的实际上已经成功的技术呢?真是太不可思议了!!!清华的高温气冷堆即使有不成熟的地方,也比法玛通EPR和西屋AP1000这2个纸上谈兵的3代技术更成熟!

有人会说,法国、美国及日本有更多的核电成功经验积累,那为什么不给自己国家的技术一点市场发展的空间呢?如果把引进国外技术所需的几百亿(有可能是几千亿)的零头来继续发展清华的高温气冷堆,以及基于秦山核电站压水堆技术的CNP1000,我就不信搞不成功。要知道,当今的几个主要核电国家:法国、美国、日本、俄罗斯,它们的核电站都是自己设计建造的!而中国作为世界主要的核大国,连核电站都不能独立建造,是不是一种耻辱呢?

再说,如果依靠引进,中国只能被动地复制国外技术,自主研发的技术又将会走“运十”老路!

此外,西屋现在是一家日本控股的公司!当今国际,对中国发展深怀恐惧,竭力阻挠甚至暗中破坏的国家,首推日本,其次美国。如果中国采用西屋公司没有商业成功营运经验的AP1000方案,在平常时期,会不会小问题不断?在非常时期,很难说,没有引进关键核心设计源程序的AP1000会不会在关键时刻,发生事故!?没有主动安全性的3代核电站一出事故,就会是一场核辐射大灾难!!!!!!

作为核工程专业出身的我,建议直接发展第4代核电技术,因为即使它的控制系统完全失效,也不会出现辐射泄露事故。也就不怕什么“后门”。清华大学的高温气冷堆HTR离商业成功只有一步之遥!

另外,基于秦山核电站压水堆技术的CNP1000也值得鼓励发展,中国以后平均每年就要建造2~3座核电站,多种自有技术并行发展也无不可。

极力主张引进的,据说主要是广东核电集团,它也提出了一个 CPR1000方案,但其出发点就是错的!核心技术依赖国外,跟不争气的中国汽车工业一样,简单组装而已。综上所述,引进国外3代核电就是自掘坟墓!---这绝不是危言耸听,对人民生命健康、对国家财产是自掘坟墓!对自我创新能力也是自掘坟墓

摘要:从世界核能发展的趋势和我国核能发展的需求出发,分析了作为一个完整的系统工程,统筹安排和协调发展大型先进压水堆核电站、快堆核电站和相关的燃料循环技术的必要性和可能性,既可使我国核能工业适时赶上世界先进水平,并能保持充足的可持续发展的生命力。1 中国核电工业可持续发展的必要性 1 .1 国家能源安全和环境安全对核电的强劲需求按2020年我国GDP翻两番的经济发展目标估计,我国能源总需求将从目前的14亿tce增长到2020年的30亿tce,我国发电装机容量需要从现在的400GWe提高到2020年的960GWe左右,需要新增加560GWe。 我国能源供应面临三大挑战,第一,能源供需矛盾极为尖锐;第二,能源发展需求与我国能源资源储量的人均拥有量不足之间的矛盾;第三,以煤炭为主的能源结构不合理,大量燃煤造成严重环境污染,还产生严重的温室气体问题。为应对上述挑战,我国必须采取积极措施,逐步改变目前不合理的能源结构。我国目前的电力供应中煤电占74%,水电占24%,核电仅占1.6%。通过大力发展水电、加快发展核电、积极发展非水可再生能源(尤其是风能)等举措,可以逐步降低化石燃料的份额,逐步改善能源结构。考虑到我国能源结构的历史与现实状况,2020年之前我国能源供应仍将无法摆脱以煤炭为主的格局,即在新增加560GWe中将有一半以上仍依赖于煤电,2020年水电装机容量即使新增160GWe左右,电力需求仍存在较大缺口,这个缺口将主要由核电来填补,即2020年我国核电装机容量应达到4000万kW左右(届时约占全国总装机容量的4%)。这需要在今后10年期间新开工建设30台左右的百万级核电机组,要求从现在起每年要开工建设2-3台百万千瓦级的核电站,任务非常艰巨。 考虑到国家安全、能源安全、环境安全等问题,考虑到2020年以后石油和天然气将更多地依赖国际市场,燃煤发电对环境的压力将更大,水能的开发也将无太多余地,因此,作为可大规模发展的替代能源,核能肯定将会有一个更大规模的发展,它在我国能源发展中的重要地位是毋庸置疑的。据专家估计,到本世纪中叶,如果我国核能发电比例要达到现在的世界平均水平(16%),总装机容量将为15000-24000万kW。偌大的核电市场需求是我国核能工业生存和发展的依据,同时也对我国核能工业的全面、协调、可持续发展提出了更高的要求。 1.2 先进核能技术必须与燃料循环技术协调发展 任何能源工业都必须以相应的燃料工业为基础。把核电技术和核燃料循环技术作为一个系统工程进行部署,是世界核电工业发展历史所证明了的,也是当今国际先进核能技术研究开发的一个显著特点。国际原子能机构的“先进核反应堆和燃料循环国际项目(INPRO)”的最主要结论之一是:核燃料循环(自铀资源开采,燃料生产,电力生产,直至废物处理处置)是推进核能发展的一个核心问题。第一,对发展中国家而言,一方面,对核电需求很强烈,而另一方面,相关的基础结构很薄弱;第二,核扩散和核废物处置更是公众关注的焦点。“第四代核能国际论坛(GIF)”确定的开发目标是:良好的经济性、更高的安全性、核燃料资源的持久性、核废物最少化和可靠的防扩散性。这些都表明,必须与先进核燃料循环技术配套协调发展,核能发展才可维持经久不衰的生命力。结合我国已有的技术基础和潜在用户的意向,大型先进压水堆是适应2020年、乃至2030年前我国核电市场规模发展最为现实的主导产品。在“中外合作、引进技术”的基础上,及早形成自主的产业平台,具有重大的经济和社会意义;同时,也只有掌握配套的先进核燃料循环技术,在技术水平和经济指标方面与国际接轨,具有较好的竞争力,才可以在新的水平上满足“十一五”开始的核电规模发展对核燃料的需求。 结合我国铀资源实际状况,快堆作为先进压水堆的后续发展堆型,并适时进入商业应用,是符合我国工业基础和核燃料循环基础的一种最佳的选择。这有利于实施闭合燃料循环、提高核燃料的利用率和减少核废物的产生量。发展快堆,是维持我国核能可持续发展的必然选择,也符合国际发展的趋势。“第四代核能国际论坛”上,经国际专家评估所选择的六种有发展前景的堆型中,就有三种是快中子堆,足见为保持核能可持续发展的后劲,普遍对快堆技术寄于厚望。应该说,核能专家在半个世纪前就充分认识了实施循环经济对核电工业发展的重要性,因为压水堆和快堆匹配,并实现铀一钚封闭循环,可将铀资源的利用率从单单发展压水堆的1%左右提高到60%-70%,可使同样的铀资源储量可提供多达60-70倍的核电装机容量的燃料需求。另外,随着核电装机容量的增长,次锕系核素(MA)和长寿命裂变产物(LLFP)的积累是对环境的潜在威胁。快堆可用以嬗变长寿命放射性废物,可大大减少放射性废物的最终处置量。 综上所述,先进核能技术与核燃料循环技术的协调、配套发展,必须作为一个完整的系统工程统筹安排,只有这样,才能适应我国能源发展对核电的强劲需求,才能更好地符合国民经济可持续发展提出的循环经济的要求。这是推进我国核电工业赶上国际先进水平、保证可持续发展必须遵循的一个战略方针。2 核电工业可持续发展的可能性 2.1 良好的运行业绩 我国正在运行核电厂的概况,见表1。 目前,我国核发电量占中国大陆总发电量的2.3%,浙江、广东两省的核电比例已经达到l 3%,接近世界平均水平16%。我国所有核电站的运行业绩良好,部分运行指标已达到国际先进水平。第一座自主建设的秦山一期核电站已经安全运行13年。秦山二期核电站全面建成投产,实现了我国自主建设商用核电站的重大跨越,比投资1330美元/kW,国产化率55%,经受住了初步运行考验。秦山三期重水堆核电站提前建成投产,创造了国际同类型核电站建设的多项纪录。大亚湾核电站保持10年安全稳定运行:岭澳核电站也已经全面建成投产,并在国际同类电站运行业绩评比中名列前茅。 2.2 必要的工业基础 我国发展核电工业已有近20年的历史,通过已建和在建核电项目的实施及关键技术的研究,我国在核电技术开发、工程设计、设备制造、工程建设、项目管理、核电站运行维修等方面已经具有较好的基础和较强的实力,掌握了主要的成熟的核电设计技术。已经具备30万kW核电站的成套出口能力和60万kW核电站的自主设计建设能力,已经基本具备以我为主、中外合作建设大型压水堆核电站的设计能力,部分设备的制造能力,以及自主建设和运行管理能力,也已具备基本配套的研究开发能力(包括计算机软件、试验设施和人才资源)。早在2000年,我们中核集团就完成了CNP1000的方案设计,并已作为大型先进压水堆的范例之一,列入国际原子能机构正式出版的“先进水冷堆发展现状”文集。此后,又利用核电新项目尚未开工的若干年问隙,进一步拓展了CNP系列设计的深度和广度,以更好地适应用户的需求。目前国家核安全当局正在对CNP1000设计进行预审评。预计2007年可以开工首台机组。CNP系列的设计与国际上正在运行的压水堆核电站技术水平相当,属于改进的“第二代”核电站,可以说,核电发展历史上10000多堆年的良好运行记录就是它们创造的。考虑到国内核电市场的紧迫需求,我们还应不失时机地建设一批改进型的“第二代”大型压水堆核电站。当然与发达国家相比,我们在核电设计和制造水平方面还存在一定差距。2.3 有利的发展机遇 我们正在充分利用改革开放的机遇,积极开拓国际合作新局面,尽快缩短与世界水平的差距,争取及早实现跨越式发展。通过国际合作,引进技术,我们可以把大型先进(符合国际上第三代技术水平)压水堆核电技术的自主化和产业化的起点构筑在新的更高的平台基础上,并尽快具备自主设计、自主制造、自主建设、自主运行大型先进压水堆核电站的能力,逐步形成具有自主知识产权的核电品牌。我们一不能等,二不能靠,在国际合作遇到不可接受的风险时,也有充分的信心,坚持开发创新,在2020年以前具备批量建设符合国际上第三代技术要求的核电站。按照这一思路编制申报的国家重大科技工程专项,已经取得了各方面的理解和支持,有希望列入国家中长期科技发展规划,获得国家财政的充分支持。我国压水堆核燃料组件技术已具有较好的配套能力,但随着核电事业的进一步发展,我国核燃料技术的差距越来越明显。在已有的技术基础上,瞄准影响核燃料产品技术性能和经济性的主要环节,通过科研攻关和适度技术改造,重点突破关键技术(如先进铀资源勘查/采冶、铀同位素分离、高性能燃料组件和乏燃料后处理技术等),使国产的核燃料产品对国外产品有竞争力,对国内用户有吸引力。并且根据我国快堆技术的发展进程及时掌握先进的燃料循环技术(包括:MOX燃料元件制造、先进的后处理和放射性废物处理处置技术等)。我们完全可以在实现大型先进压水堆批量化建设的同时,逐步形成国产化先进高性能燃料组件的供货能力,及早实现封闭燃料循环,为快堆的发展、并为最终实施铀一钚闭合循环奠定技术基础。我国的实验快堆正在加紧建设,预期“十一五”可建成并投入运行,这将为快堆技术的进一步发展提供技术和人才基础,并可利用有利的国际合作机遇(包括快堆工程技术和相关的核燃料循环技术),加快大型快堆技术的开发步伐,争取实现跨越式发展。力争2020年左右建成中等规模的原型快堆电站,并具备相应的闭合燃料循环支持能力。希望在2035年左右能建设具有国际上第四代核电技术特点的商用核电站,2040年后批量建设。 综上所述,以压水堆为主的热堆核电站是我国近中期核电的主导产业,在改进型的“第二代”大型压水堆核电站产业化发展的同时,抓住有利的国际合作机遇。通过引进技术、消化吸收、自主创新,2015年以后掌握“第三代”大型先进压水堆核电技术,逐步成为我国核电规模化、批量化、标准化发展的主力机型,其发展的生命力可延续至2030年,乃至2040年。 快堆作为先进压水堆的后续发展堆型,在203 5年前后进入商业应用是适宜的。为此,计划在2020年左右建成原型快堆,使快堆核能系统在2040年以后得以批量发展,并在2050年以后逐步成为我国核能主力。相应的核燃料闭合循环系统(包括高放废物处理处置)也必须同步协调发展。 我们认为,只有这样的部署,我国的核电工业才能符合全面、协调的科学发展观的要求,不仅可以适时赶上国际先进水平,而且将具备可持续发展的充足的后劲。

核能的发展面临经济竞争力、核安全、核废物的最终处置及防止核武器材料扩散的挑战。为改善公众的可接受性,核电厂的安全性进一步改进。电力市场体制的非管制化改革加剧了电力技术的竞争。环境保护意识增强使核废物的处置倍受关注。80年代中期以来发展的先进轻水堆核电厂如ABWR,System 80+,EPR,AP600等是今后一段时期内商用核电的主力堆型。进入2000年之际,美国能源部正在规划发展第四代先进核能系统,目标是在2020年或之前,向市场提供经过验证的成熟的第四代核电厂技术,以替代美国退役的核电容量。球床高温气冷堆被认为是第四代先进核能系统的优选技术。南非ESKOM电力公司选择了球床高温气冷堆作为今后核电发展的堆型。清华大学承担设计和建设的10 MW高温气冷实验堆计划在2000年内临界。通过10 MW高温气冷堆的建造,我国已形成了高温气冷堆技术的自主知识产权,初步具备了自主设计、制造和建造的能力。

The major challenges of the nuclear power are economic competition, safety, profilication resistance and waste storage. The safety of the nuclear power plants has been enhanced continuously in order to improve the public acceptance. The de-regulation of the electricity market in the United States and Europe encourages the competition between the different power generation technologies. The waste storage has been paid great attention. The ALWRs like ABWR, System 80+, EPR and AP-600 development from mid of 1980s are the major commercial products available in the market in the near future. When the time enter the 21 century, US DOE is planning to develop the Generation IV nuclear power system, in order to design one or more nuclear power systems that is market available before or in the year of 2020 and could be used to replace the current nuclear power plants. The modular pebble-bed High Temperature Gas-cooled Reactor (HTGR) is considered as a prefer candidate in the Generation IV nuclear power systems. The South Africa selected the modular HTGR as the reactor type to develop. The 10 MW test HTGR (HTR-10) designed and constructed in Tsinghua University Beijing is scheduled to reach critical in the year of 2000. Based on the HTR-10 project, China has established her preliminary capability of designing, constructing and manufacturing pebble-bed modular HTGRs.

郑健超院士谈我国核电实现规模发展的战略

我国大陆的核电事业从20世纪70年代起步,经过30多年的发展,已先后建成秦山核电站、大亚湾核电站、岭澳核电站。截至到2005年底,我国核电装机容量688万千瓦,占全国电力总装机容量的1.4%;年发电总量为530.82亿千瓦时,占全国总发电量的2.2%。2006年3月22日,国务院审议并通过了《核电中长期发展规划(2005—2020年)》。预计到2020年,我国的核电装机容量将增长到4000万千瓦,约占全国发电总装机容量的4%。日前,中国工程院院士郑健超在为大连市民做讲座时就我国核电实现规模发展的战略问题谈了自己的看法。

郑院士介绍说,我国最近确定了积极发展核电的方针,规划了在2020年建成4000万kW核电的目标。 这是科学发展观在能源政策上的具体体现,受到全国各界的一致拥护和支持。历史将证明,这是影响深远的战略决策。我国一次能源短缺的严峻形势表明,我们必须抓住时机,推动我国核电发展更快一些,规模更大一些,以便满足我国未来对能源的需求,否则目前核电边缘化的局面更难以扭转,实现能源可持续供应的目标难以实现。

对于如何才能在保证核安全的前提下,使我国的核电实现规模发展,郑健超提出了自己的几点看法:

一、核电规模发展是我国不可替代的战略选择。

核电是世界能源结构中的重要组成部分。目前核电、水电、燃气发电在全球电力供应中各占17 %左右的份额,形成煤电之后的“三足鼎立”的局面。美国、法国、日本等国在上世纪70年代石油危机时期果断决策,执行强化核电发展战略,经过20年左右的时间,便实现了核电的规模发展,形成了强大的核电产业。韩国等一次能源短缺的国家也一直把发展核电作为国策,坚定不移地发展核电,使核电成为主力电源。

前不久,国务院提出要积极发展的方针。要落实国家积极发展核电的方针,首先必须解决对核电规模发展的必要性的认识。如果把发展核电当作权宜之计,甚至认为可有可无,就不会形成举国一致的积极发展核电的强大推动力。

发展核电的必要性是由我国一次能源供应能力极其有限的国情决定的。我国能源需求的特征是:总量巨大、人均水平很低和增长率高。由于工业化和城市化的驱动,中国未来能源需求预计将继续显著增长。2020年能源需求极有可能达到甚至超过31亿吨标准煤。人均能源消费水平虽然提高了1倍多,达到2 吨多标准煤,但仍低于届时的世界均值。

奔向小康的中国人争取享用接近世界均值的能源合情合理,但由于国情决定,要满足这样低水平能源消费也是极其困难的。

我国虽然幅员广大,但从人均的意义上讲,能源资源非常有限。我国人均化石燃料资源仅为世界均值的56 %。石油、天然气的人均可采储量仅为世界均值的8 %。可预见到的未来,煤炭仍是我国主要的一次能源,但煤炭可持续供应的前景也不容乐观。我国煤炭资源虽然总量很大, 但经济可采量少、环保型资源少、可供开发的资源少。要解决煤炭可持续供应的问题,急需提高煤矿的装备水平、提高开采效率和安全生产水平,加强矿区环境保护,采取有力措施制止对资源的掠夺性开采,抑制矿难频发的势头。

水电是替代化石能源的首选,需要加速开发。我国经济可开发的水电装机总量为3.7亿千瓦(近期的调查结果)。但是,即使这些水电资源全部开发完毕(相当于20座三峡电站),仅可满足 2020年用电量需求的28 % 。何况,这些水电资源是否允许全部开发,还取决于长远生态影响的评估和科学论证的结果。

在世界范围内,非水电可再生能源在20-30年内还不能成为能源供应得主力。我国也不会例外。

必须指出,一次能源短缺是我国国情决定的长远性根本性的问题,单靠常规能源发电设备的扩张是不能解决问题的。近年来由于电源的急速扩张,一些燃煤发电和燃气发电厂已面临“断粮”的严重问题。填补一次能源缺口非核电莫属。至于温室效应气体减排,核电无疑也将发挥骨干作用。因此,规模发展核电是实现我国能源可持续供应的不可替代的战略选择。

二、国外核电规模发展的成功经验值得我们借鉴。

要推动我国核电的规模发展,需要在吸取国外的成功经验的基础上制订我们的发展战略。美国、法国,日本、韩国等国,为应对能源危机、都先后执行了强化核电的战略,成功实现核电规模化发展。这些国家的经验值得我们借鉴。

在谈到法国核电发展历程时,郑健超说,法国规模发展核电的成功经验是举世公认的。1974年,第一次石油禁运后,法国政府决定启动强化核电的计划,以便减少对进口石油的依赖,当时法国75%的石油依赖进口。规模发展核电的责任落在法国电力公司(EDF)的身上。经过20多年的努力,目前法国电力公司拥有55座反应堆(全法国57座)在运行,提供了全国用电量的80%。法国现在还对邻国输出电力。核电给法国人提供了相当廉价的电力,核电的电价比煤电和燃气发电的价格低20%。同时,核电给法国人提供了大量的就业机会,因此,发展核电的政策得到了法国工会有力支持。法国的实践证明核电是清洁的电源:二氧化硫的排放从1980年的1000,000吨降低到1987年的85,000吨;法国的二氧化碳排放1980年以来降低了三分之一,核电的贡献率占 70% 以上。

尽管法国电力公司面临偿还债务和核废料处置等挑战性问题,法国规模发展核电的成功是不容置疑的。法国的成功经验至少包括如下几点:一是戴高乐政府果断决策,政府主导规模发展核电,在技术路线上放弃气冷堆的技术路线,转而采用西屋公司的压水堆技术,并全力推动实现本地化和标准化;二是由法国电力公司统一负责,承担核电站的设计、建设和运营,推进第二代压水堆技术的持续改进;三是政府支持把法马通公司从一个不起眼的小公司培育成为现在世界最大的核岛设备供应商;四是法国电力公司(业主+ A/E 公司)与法国原子能委员会(核安全管理)的密切沟通和合作;五是把电站维修看作与电站运行同等重要,法国核电站用于维修的费用高于运行费用(扣除燃料费用和折旧以后);六是法国电力公司统一负责电网和电源的统一规划,这是保证电网和核电站安全运营的重要经验。法国的电网已发展成为典型的网状结构坚强电网(meshed network)。分布合理的、相距200-300公里的枢纽变电站全部用双回路400 kV 超高压线路连接成紧密的电网,同时有9路超高压线路与邻国电网互联。核电站的布局和接入系统的方式的规划与电网的规划有一个长远的统一考虑,决不搞一事一议。

在介绍亚洲国家的经验时,郑健超谈到,日本基于本国国情的战略考虑,从70年代起,开始实施规模发展核电的计划,现在已有56个反应堆在运行,装机容量4500万千瓦,提供了全国30% 的电力。韩国在引进技术的基础上,比较短的时间内实现了自己的标准化系列。现在已经有能力设计1400MW的先进堆。这两个国家的经验同样值得我们借鉴。

三、我国核电发展需要关注的几个问题:

最后郑院士说,要实现我国核电规模发展的目标决非易事,需要克服许多技术、体制和观念的障碍,有以下四个问题需要高度关注。

第一,对核电的认识问题。

要实现我国核电的规模发展,首先必须对核电的不可替代性有高度的一致认识。发展核电绝非权宜之计。随着时间的推移,一次能源的供需矛盾会更加突出。如果不采取断然措施,克服影响核电发展的技术障碍和体制障碍,强化核电的规模发展,而听其自然、按惯性发展,将会再一次错过时机,铸成历史性的错误。

第二,技术路线图问题。

一个清晰的技术路线图对实现核电的规模发展非常重要。国内外的专家普遍认为:我国要实现2020年核电建设的目标,参照国外在成熟技术基础上本地化、标准化、批量化的经验,必须加快改进型二代核电机组的规模建设。

国际上在运行的核电机组主要是第二代压水堆核电机组,现已积累了13000多堆年的运行经验,创造了良好的安全运行业绩,经济上有竞争力,显示出很强的生命力,美国西欧正在进行第二代压水堆核电机组延寿。我国通过大亚湾、岭澳、秦山核电站的成功建设和安全运营,也已证明第二代机组的安全有保障,经济上有竞争力,通过不断改进,安全性和经济性还可以进一步提高。

考虑到第三代压水堆机组的引进还有不少不确定因素,考虑到这类机组目前尚处在设计阶段,更无商业运行的业绩,即使引进技术并建设成功,也需要经过较长时间的试验示范运行考验后,才能决定开始批量建设。因此,“十一五”“十二五”期间投运和在建的核电站的主流应为改进型的第二代机组,这也是完成2020年前核电建设目标的现实可行之道。

批量建设第二代核电机组与引进第三代技术是相辅相成、并行不悖的。批量建设第二代核电站的工程实践可以为全面掌握第三代核电技术准备更好的技术基础和人才队伍。

我们在加快改进型二代核电机组的规模建设的同时,不能放松第三代压水堆技术引进吸收的步伐。按照国家的部署,广东阳江已经完成了大量的工程前期准备,为承接第一个第三代压水堆的示范工程创造了良好条件,现在正静候三代招标的决策。

鉴于第三代压水堆的某些关键技术的政治敏感性,加强我国自主创新能力更为重要。我们相信,在国家科技和产业发展的计划的重点支持下,我国有能力通过自主研发和首期试验示范工程实践,为2020年后核电更大规模的发展提供具有自主产权的主力机型。为达到此目的,需要尽快启动大型先进压水堆的自主研发计划。《国家中长期科技发展规划》和《国家高技术产业“十一五”专项规划》均已把第三代压水堆技术列为重点,需要尽快组织全国核电业界的力量付诸实施。

第三,建设完整的核电工业体系问题。

国外发展核电的成功经验表明,要实现核电的规模发展,仅仅建立核电的科技体系还不够,还需要建设从工程设计、装备制造、直到工程建设和运行维修的完整的核电工业体系。与此同时,还需要配套建设相应的铀资源勘探开发与储备系统、核燃料供应系统、核燃料循环系统(包括核燃料循环的前端处理与后端处理系统)。我国现在的核电工业体系中不少环节还比较薄弱,难以适应大规模发展核电的需要,建立健全既符合中国国情又与国际接轨的完整的核电工业体系,是当务之急。

例如,我国目前尚无有竞争力的核岛设备(NSSS)成套供应商。我国制造企业已具备按照图纸生产核岛部分设备,如蒸汽发生器的能力。但缺乏NSSS的系统设计能力和成套供应能力。核岛是非常复杂、可靠性要求很高的系统,与大型客机类似。如果核岛的国产化仍沿用过去设计院设计-制造厂分头攻关、分部件按图加工-工程建设单位负责集成的工程模式,势必造成接口界面过多、质量、进度控制困难的局面,总体可靠性难以达到要求。因此,必须克服我国制造与设计、科研分离的体制性障碍,培育我国有竞争力的核岛供应商。这是积极稳妥推进核电规模发展的一个关键问题。

培育我国有竞争力的核岛供应商是一个涉及全局的重大决策。需要克服条块分割的体制弊端,由政府主导,作好进一步的规划论证,整合各方的资源,逐步实现预定目标。

第四,关于核电站布局与电网统一协调规划问题。

核电站的布局和电网的统一协调规划对核电建设和安全运行十分重要。计划中的核电站主要建在沿海经济发达地区。这些地区的电力系统的负荷密集、电源密集、变电站密集。以广东电网为例。2020年,广东全省全社会用电最高负荷预计将达1.3亿千瓦。深圳、广州、东莞三市的最大负荷均将超过2000万千瓦。广东省面积仅为法国的1/3,再考虑到广东的电力负荷70%集中在珠江三角洲的狭小的范围内,因此,负荷密集程度预计和东京地区的负荷密度相当。由于电源、负荷过于密集产生的问题,如短路电流超过断路器能力的问题、线路走廊和变电站站址问题、直流输电接地极选址困难等问题会日益突出起来。有一系列涉及电网安全和核电站安全的问题需要研究。需要提前做好统一规划和系统深入研究,切忌一事一议地做核电站接入系统研究,以免造成系统的结构性缺陷,影响安全经济运行。另外,鉴于输电走廊、变电站站址和核电站站址一样是稀缺资源,需要通过统一规划确定下来,加强保护,以减少将来建设的成本。(徐峰文/摄)

来源:
友情链接
北极星工程招聘网北极星电气招聘网北极星火电招聘网北极星风电招聘网北极星水电招聘网北极星环保招聘网北极星光伏招聘网北极星节能招聘网招标信息分类电子资料百年建筑网PLC编程培训

广告直拨:   媒体合作/投稿:陈女士 13693626116

关于北极星 | 广告服务 | 会员服务 | 媒体报道 | 营销方案 | 成功案例 | 招聘服务 | 加入我们 | 网站地图 | 联系我们 | 排行

京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案

网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号

Copyright © 2022 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有