首页专业论文技术应用政策标准解决方案常用资料经验交流教育培训企业技术专家访谈电力期刊
您现在的位置:北极星电力网 > 技术频道 > 经验交流 > 循环流化床锅炉运行、技改和调试经验

循环流化床锅炉运行、技改和调试经验

北极星电力网技术频道    作者:佚名   2008/1/23 19:50:35   

前言

吴县市政府适应开发区建设的需要,于一九九二年明确建设供电、供热、节能、环保的热电厂工程。工程工期设计为3×75t/h循环流化床(CFBC)锅炉以及2×15MW抽凝式汽轮发电机级。考虑到当时国产CFBC锅炉尚处于开发阶段,初期供热用户还不足,确定先期两机两炉投产。一期工程土建于一九九三年五月开始动工,第一套机组于一九九四年十二月十一日投产,一九九五年四月三日投入第二套机组。

1#、2#锅炉是中科院热物理研究所设计,杭州锅炉厂制造的NG-75/5.3-MIA型CFBC锅炉,是当时首家通过鉴定的产品。电厂投产后影响正常运行的问题主要发生在“锅炉岛”设备上。如上煤系统堵塞,不能向锅炉连续供煤,锅炉的炉墙、对流受热面磨损,半年后省煤器即因磨损爆管,过热器管也有不同程度的磨损。收集循环灰的旋风分离器阻力达2400Pa,造成引风不足,出力仅65t/h,达不到75t/h额定出力。锅炉设计效率为88,但实际运行时,1#炉最高为84.43~86.11,2#炉最高为83.4~84.7,飞灰含碳量Cfh=13~20以上。

此外,水膜除尘器达不到设计分离效率,排烟粉尘浓度无法满足城市环保要求。

为摆脱上述被动局面,决定3#炉先用北锅引进技术制造的Circifluid/型75t/hCFBC锅炉。3#炉投产后,在可能的范围内对1#、2#炉进行技术改造,消除缺陷,做到安全经济运行。同时将锅炉尾部水膜除尘器拆除,改用电气除尘。

1锅炉设备简介

表1锅炉设备规范

名称规范

符号

单位

1号炉

2号炉

3号炉

备注

型号

NG-75/5.3-MI

NG-75/5.3-MI

BG-75/5.29-M

额定蒸发量

0

t/h

75

75

75

最大蒸发量

MCR

t/h

-

-

82.2

汽包工作压力

P

MPa

5.69

5.69

5.66

过热蒸汽压力

PGR

MPa

5.30

5.30

5.29

给水温度

tgs

150

150

150

室温

ts

20

20

20

热风温度

tR

202

202

185

排烟温度

tpr

150

150

142

锅炉热效率

η

88.0

88.0

90.55

一次风机

A

A

D

二次风机

B

B

E

引风机

C

C

F

罗茨风机

G

其中:

A:G9-19-11NO150、Q2.174-5.216×104m3/hH1.354-1.206×104Pa

B:G5-29-11NO160、Q3.077-6.155×104m3/hH10850-79004Pa

C:Y4-60-11NO190、Q10.23-20.47×104m3/hH4600-2720Pa

D:G9-19-11NO19D450KW1480r/min、Q45040-108090m3/hH22187-19743Pa

E:G5-36-11NO14D132KW1480r/min、Q33000-54000m3/hH8003-5405Pa

F:Y5-48-11NO20.5D315KW985r/min、Q100080-200520m3/hH5232-3855Pa

G:YCT250-4A18.5KW、Q11.02m3/hH>8400Pa2燃煤品位2.1燃用淮南煤,其分析基挥发份Vf~25,属于动力烟煤。

表2是燃煤的分析。

表2煤质分析

名称

符号

单位

设计

95.7

98.7

98.10

99.11

工业分析

应用基水份

Mt

-

6.39

8.40

7.10

6.21

应用基灰份

Aar

-

39.99

26.76

24.48

29.76

分析基灰发份

Vf

24.49

24.49

23.31

23.64

24.93

应用基地位发热量

Qar

Kj/kgKcal/kg

16.52×1043945

17.03×1044075

21.04×1045032

22.16×1045032

20.49×1044895

元素分析

炭(应用基)

Car

8303★

43.64

54.05

56.81

53.17

氢(应用基)

Har

5.63

2.80

3.67

3.85

3.61

氧(应用基)

Oar

7.89

4.48

5.19

5.46

5.05

氮(应用基)

Nar

0.81

0.95

0.53

0.55

0.519

硫(应用基)

Sar

2.55

1.24

1.66

1.75

1.63

灰熔点t11300℃t21420℃t31500℃

★--可燃基

淮南煤灰份的软化温度t1=1300℃,如果运行正常一般不易结焦。

2.2燃煤破碎、筛分、输送系统。

淮南煤是用般从矿区运至电厂运河边专用码头的。途中用防雨帆布盖住船舱,但在年降水量达1000~2000mm的多雨的江南地区,稍不注意即在输煤系统(图1)的筛网、破碎机出口管、煤仓、绞龙给煤机入口或出口等处发生堵煤,不能正常向炉内输送燃料,为正常发电、供热、电厂采取以下措施,彻底的解决了断续供煤的问题。

2.2.1从船上卸煤时,迅速用皮带、吊车输入干煤棚堆放、风干。充分发挥干煤棚作用。

2.2.2破碎机前置8×8mm筛网,原煤先行筛分,〉8mm块煤入破碎机。雨天时常检查、清扫破碎机出口网板。这一措施避免了破碎机经常堵塞的弊病。

2.2.3原煤仓、落煤管的下倾角>700,在原煤仓、落煤管(包括破碎机出口管)的内壁上镶贴δ=16mm的高分子聚乙稀板。避免了煤仓、落煤管的堵塞现象。

2.2.4给煤绞龙进、出口的堵煤现象是最频繁的地区。原煤仓内衬高分子聚乙烯板之后,入口堵煤的问题大体上解决了。但出口堵煤仍然存在。后将给煤绞龙从原煤仓下口13M平台下移至7M运行层平台,直接输入炉膛入口落煤管,并在给煤绞龙出口出加装密封播煤风。堵塞炉内高温烟气反窜,消除原煤干馏出的水汽云集在绞龙出口堵煤。

燃料筛分、破碎、输送系统经过上述改进、加强管理后消除了堵煤的问题。

3磨损

CFDC锅炉入炉煤的粒径要求<8mm,表3是经过筛分、破碎后的入炉煤颗粒情况。平均粒径大体上在2.9~3.4mm范围。远远大于煤粉炉的粒径,图2是流化床锅炉入炉粒径分布图。

图1燃煤系统图



表3入炉煤颗粒分布

粒径mm(96.7)

10-14

10-4.75

4.75-2.5

2.5-1.19

1.19-0.60

0.60-0.28

<0.28

平均粒径★

重量百分比

7.94

12.65

7.14

25.42

23.76

22.17

0.92

2.9

粒径mm(99.10)

10-18

10-6

6-5.5

5.5-4.5

4.5-2.5

2.5-1.5

1.5-0.8

0.8-0.4

平均粒径

重量百分比

6.98

9.3

2.33

4.66

23.26

13.96

11.63

27.90

3.41

★dp=∑i×xi[]100[SX)]

经过流化、燃烧后,床料粒径较小的入炉煤有所降低,表4是CFBC锅炉试验时床料粒径分布表。其平均粒径为1.7-1.8mm。对临界流化速度及临界风量的影响较大。

表4床料粒径分布〖BHDG18mm,K14mm。10〗床料粒径mm10-1410-4.754.75-2.52.5-1.181.18-0.60.6-0.280.28-0.125<0.125平均粒经dpmm〖BHDG8mm,K14mm。10〗重量百分比1.66.47.124.121.228.810.00.71.71〖BG)〗

CFBC锅炉运行时,还有远大于入炉煤量的循环灰返回炉内继续燃烧,炉内的烟气浓度是很高的,图3是沿炉膛高度烟气浓度分布图。对提高传热固然是良好的举措,但同时带来了对炉墙、受热面的磨损问题。高浓度烟气对管束的磨损量可以用下式估算:

E=ad2pμρ

式中:E-管壁磨损量mm/10万小时dp-灰粒平均粒径mm

μ-气流速度m/s

ρ-气流含灰浓度kg/m3

α-~103

图2入炉煤粒径分布曲线



图3CFBC锅炉烟炉膛高度烟气浓度据资料介绍和本厂实测,尾部烟道飞灰浓度ρ>2kg/m平均粒径dp=0.2~0.3mm,而且过热器省煤器入口的气流速度达到8~9m/s。在现有的设备条件下减少磨损可采取的切实措施是提高循环灰的捕集量和降低烟速。经同中科院热物理所、制造厂共同商定,技改防磨措施从以下几项入手。

3.1炉墙以及烟道

3.1.1炉堂底部四周炉墙是耐磨性良好的磷酸盐耐火砖,但结构不很合理,易位移,鼓凸。

技改时改用带止口和拉钩的磷酸盐耐火砖。

3.1.2膨胀密封用的4#砖块偏大,制作不易成功,施工密封也较困难。这次改为用耐高温的钢筋作骨架,用白钢玉浇注方法,较为成功。

3.1.3防烟气短路、涡流引起受热面局部磨损。

炉堂出口8根Φ108导汽管表面,原设计敷涂防磨浇注料。但脱落处的管子裸露后易磨损。现改为镶嵌防磨金属护瓦。增加了受热面积,还使烟气流通截面增加0.16m2。

·承载一级百叶窗惯性分离器的拉稀管,原挂钩不规则,予以纠正。并在靠两侧炉墙处予以密封,防止保护材料脱落后烟气短路引发局部磨损爆管。

·尾部烟道后墙顶部原为直角弯头,该处烟气流较浓,易发生涡流,增加气流不均匀分布。现将直角改成圆弧,使气流均匀分布。

3.1.4扩大烟气流通截面,降低烟气速度。表5是技改前后烟气流速的分布情况表5烟道平均烟气流速m/s

部委名称

高温过热器

低温过热器

高温省煤器进口/平均

低温省煤器

备注

第一次换省煤器后

6.2

8.34

7.997/7.27

7.06

/

本次改造设计

5.19

6.41

6.26/6.04

7.66

/

调试测算

5.29

6.95

6.81/6.26

7.41/6.24

略高于设计

对于浓度较高,颗粒较粗的CFBC锅炉而言,8-9m/s的流速显然偏高,所以运行半年后,“高省”即发生因磨损而爆管故障。

技改时,在钢架许可范围内将高温过热器至尾部烟道(从Z1至Z4立柱)的炉顶抬高600mm。过热器本身也相应加长约600mm,在受热面大体不变的前提下,过热器管排由60排减至55排,管排中心距由90mm增加100mm。高温省煤器改用直鳍片管顺排布置,每排根数增加至16根,管排中心距从90mm扩大至105mm。

尾部烟道入口处原用砖砌,技改时改用浇注式护板,烟道深度从2400mm扩展到2700mm。

3.1.5技改工程中,旋风分离器改用直径为2000mm、入口管为锅壳式的,中心管下端为反向百叶窗筒心、阻力较低的高效旋风分离器。为减少低省磨损和改善分离器进、出口管处烟气分布不匀,将低温省煤器设置在分离器后部,两个旋风筒出口设一专用排烟道,然后分成左、中、右三股气流均匀进入低温省煤器入口烟道。

通过上述设备改进、如表5所述,烟气流速大为降低,局部短路、涡流有很大改善,烟道阻力有所降低,运行一年多以来,过热器、省煤器未再发生磨损、爆管事故。锅炉出力也有明显改善。技改后的1#、2#炉如图4所示。

4启动试验4.1风机试验以3#炉为例,对4台风机进行冷态启动试验,除引风机因工质差别较大,难以预先下定论外,其余三台风机均满足锅炉厂要求的参数及铭牌规格(表6)

表63#炉风机冷态试验结果

 

风机名称锅炉厂要求参数风机铭牌参数冷态试验实测数据风量m3/h阻力pa风量m3/h全压pa风量m3/h风压pa

一次风机

43560

16840

45040-108090

22187-19743

★(床料高700mm)21335-60111

5400-20150

二次风机

35640

4940

33000-54000

8003-5405

★★31170-66074

642-6260

引风机

122760

3308

100080-200520

5232-3855

※51334-115978

※240-2780

罗茨风机

/

/

/

/

★挡板0-45★★挡板10-70※挡板0-50

冷态个风机在此开度下已近额定电流

4.2测风装置标定试验

1#、2#炉在一、二次热风道分别装有双文丘里测风装置,3#炉则装置机翼形测风装置。以3#炉为例,机翼所产生的差压△Pj要比风道中气流的实际动压△Pd放大5-8倍。所以在同一风道中用标准皮托管测得气流的平均实际动压△Pd,同时记录几次机翼所产生的压差△Pj。机翼的流量系数kj可以计算出:

kj=(△Ppd)1/2/((△Ppj)1/2

式中△Ppd一皮托管所测平均动压〔Pa〕

△Ppj一机翼显示的平均压差〔Pa〕

3#炉各风道流量系数K:

表73#炉各风道机翼流量系数Kj

风道名称

一次热风道

二次热风道(下)

前墙二次热风道

二次热风道

流量系数kj

0.4

0.38

0.32

0.40

根据机翼显示的差压△Pj,可以计算出该风道中的风量Q:

Q=W×3600×F〔m3/h〕

式中W-气流速度〔m/s〕

W=1.414×kj×[SX(〗(△Pj)1/2(ρ)1/2[SX)]

ρ=1.293×〖SX(〗273 20273 t[SX)]×[SX(]760 Ps[]760[SX)]〔kg/m3〕

Ps---气流静压〔mmHg〕

ρ---t温度时的气流密度〔kg/m3〕

20℃Q20=1.414×Kj×[SX(]1[](ρ)1/2[SX)]×3600×F×

(△Pj)1/2〔m3/h〕

=A×(△Pj)1/2[ZK)]

20℃时各风道的A值列于表8。

表820℃各风道计算风量Q20的A值

风道名称

一次热风道

一次热风值分风值

二次热风道(下)

二次热风份道(下)

二次热风道(上)

常数值

2036

865

831

350

874.43

机翼产生的差压△Pj,通过差压变送器转换成电流讯号输入计算机,可在表盘上的二次仪表上显示出风量。运行人员习惯于20℃时风量,所以热态Q风量要转换成Q20风量。

Q20[ZK(]=A×(273 20)1/2×(△Pj/(273 t)1/2

=A×17.2×〔△Pj/(273 t)〕1/2〔m3/h〕

图5表示一次热风分风道上机翼差压△Pj与风量Q20的关系曲线图。

一次热风分道△Pj与Q关系曲线图。



4.2空床布风板阻力试验

与国产CFBC锅炉不同,3#炉的布风板由后水冷壁及鳍片组成,管中心距180mm。风帽顺列布置,镶嵌在鳍片上。风帽纵向节距223mm(炉膛深度方向),共242个风帽。2个排渣口,与国产CFBC炉相比,风帽的间距较大,数量较少,风帽的结构如图6所示。布风板纵向距离1850mm(深),横向距离与炉膛宽度相等,为5580mm,布风板面积为10.3m2,比1#、2#炉大1/3。正因如睛,风帽出口的环状气流速度要比国产CFBC炉大。空床布风板阻力试验前,要清理布风板风帽,再启动引、送风机。稳定后,改变送风机挡板开度,测量风量及布风板阻力△Pb。额定风量时(挡板开度25)风帽小孔(环状底边)流速达40m/s。较国内推荐值高1/3左右。经过整理后,布风板阻力△Pb在20℃空床时。

图6风帽示意图

△Pb=102.9×10-8×(Q20)2〔Pa〕

热态△Pb=10.351×10-8×(273 t)×(Q20)2〔Pa〕



图7是空床时不同风量下的△Pb特性曲线。临界流化风量(~3100m3/h)时,布风板阻力1000Pa左右,是1#、2#炉的2倍左右。

图7空床布风板阻力△Pb曲线



将1#、2#炉的炉渣作试验床料,平均粒径dp=1.8mm,堆积密度dj=1230kg/m3,视在密度ρ=2350kg/m3。床料厚度分别保持500、700、1150、三个工况。每个工况下改变一次风机挡板开度(5、10、15、20、25、30、38),并测量风量、布风板阻力△Pb、床料阻力△PL,从而求出临界流化风量QL。如图8所示。QL实质上是CFBC锅炉能维持流化状态运行的最低允许一次风量。图8显示3#炉的QL=3100m3/h,稍高于1#、2#炉,但冷态空塔速度接近,WK=0.84m/s。临界速度还可依据床料颗料及密度予以计算,作为校核。

图8床料阻力与临界流化风量关系



mf=0.33dp0.605D×υ-0.07×((ρs-ρk)/k)0.535m/s

式中[ZK(]dp-床料平均粒径0.0018m

υ-空气运行粘度15.0/106m2/s

ρs-床料视在密度2350kj/m3ρk-空气密度1.2kj/m3

计算结果mf=0.904m/s,接近试验数据。所以比较完整地讲,QL=3100~33500m3/h,此时一次风机挡板开度~25。4.4喷油嘴咀出力试验

喷油嘴在油压为2.2MPa时,铭牌出力为410kg/h。试验的油压P与出力关系如图9所示。P=2.2MPa时,出力达660kg/h,超过铭牌很多。点火容易引起炉膛升温过快。

图9油枪出力与油压关系



4.5点火装置增设旁路风道

3#炉与点火方式与1#、2#炉不同,采用床下热烟炉点火升温方式。3#炉的风室和布风板由两侧水冷壁及后水冷壁构成。一次风入口为两个燃油热烟发生炉,如图10所示。点火后燃油产生的高温烟气通过燃油量及冷风量的配比使出口烟气温度逐步升至~850℃。热烟气通过风帽加热床料,当床温加热至煤的着火温度后予以投煤,保证原煤投入床料后即燃烧。床下点火启动方式不仅可以节省点火用油,而且保证点火的成功率及炉墙缓慢升温。原设计正常运行时,一次风也得全部切向涡旋通过点火炉本体再入风室。这样增加一次风阻力达~1400Pa,在征得制造厂同意后,正常运行时将一次风机全部通过新增设的620×800(mm)旁通风道直接进入布风室,年节电13×104KWH以上。

图10燃油起动设备

5点火启动及燃烧调整

5.1点火启动

5.1.1布风板上铺上粒度,>8mm、厚度≥600mm的,可燃物CLZ<2%的床料。

5.1.2启动引风、一次风机,一次风保持临界流化风量(如果3#炉为3.1~3.3×104m3/h),使床料达到流化状态。

5.1.3启动油泵,油压控制在1.8~2.0MPa,投入点火器,开油枪油门点火,根据燃烧及温度情况调节一次风。5.1.4调节油门开度和一次风量,使燃烧炉出口热烟器温度控制在600~800℃,缓慢加热床料及炉墙,CFBC锅炉在炉堂底部,旋风筒内壁等处涂敷大量耐火材料,缓慢升温可避免耐火层发生裂纹或剥落等现象,。用60分钟时间将床温至值500℃然后少量投煤,使得500℃床温维持30~40分钟左右。如投入原煤析出挥发份并并开始着火燃烧,可逐步加大给煤量,减少燃油量,保证床温缓慢上升。

5.1.5床温升至600℃以上后,可投入循环灰回料装置。床温达700℃以上时,如给煤和着火正常,循环灰正常,可解列油枪,停运油泵,一次风全部通过新设旁路进入布风室。

5.1.6启动二次风机,投上、下二次风。

5.1.7从冷炉点火至床温达到850℃的点火全过程,约需三小时左右,升温曲给如图11所示。



5.2燃烧调整

影响CFBC锅炉热效率的主要因素是排烟热损失q2及飞灰可燃物Cfh含量造成的qrh大的主要因素又是炉膛温度水平,如图12所列的炉膛平均温度水平q4和η的影响。所以调试工作的重点在寻找最佳氧量和合理的二次风比例。

图113#炉点火升温曲线

5.2.1过剩空气系数优化试验

以技改后的2#炉为例,用标准O2计测“低过”出口烟气中的(OTG2)y作为控制风量准则。一次风率q1保持48左右时锅炉效率最高,如图12所示

5.2.2提高炉膛温度

对CFBC锅炉热效率影响最大的因素是排烟热损失q2及机械未燃尽热损失q4一般而言,CFBC锅炉的炉渣含量均较小,CLZ~25以下,所以影响q4的主要因素是CLZ~25以下,所以影响q4的主要因素是Cfh即qfh4。造成Cfh高的主要原因是炉膛高度不够,飞灰的燃烧行程不足,炉膛的温度水平不足,

图122#炉一次风率与炉温、热效率的关系

如循环灰量超过设计值很多,破坏设计热平衡、降低整个炉膛温度水平,使行Cfh增加。炉膛温度水平低与制造、运行部门未充分发挥CFBC锅炉两级燃烧方式关系较大;二次风的布置高度、速度、比率对炉膛温度(θP1)、也即对Cfh高低影响颇大。在提高锅炉热效率的技改和调试中主要采取以下措施:

5.2.2降低布风板高度50mm

1#、2#炉钢架、汽水管道已经固定,而布风板至炉膛出口(中间)高度近~17.8M,显得偏矮。(新设计的75t/Hcfbc同型号的锅炉炉膛抬高1.8M)根据电厂具体条件,只能将布风、、板下降500mm,适当增加炉膛高度。图13是技改前、后炉堂底部结构图。

图1375t/Hcfbc布风板及二次风技改图

5.2.2.2改进二次风CFBC锅炉的燃烧特点是1000℃以下的低温燃烧;循环灰多次返回炉内再燃烧,形成炉底微正压;采用明显的两级燃烧措施,即一次风入炉后保证床料、入炉煤或石灰石的流化、混合,并提供一部分空气进行缺氧燃烧,使煤炭大部分成为CO等可燃物,并释放出部分热量

2C O2=2CO

有利于控制床温水平。这一反应过程是需要一定时间的。未燃尽炭及CO等可燃物上移后遇二次风的搅拌、混合,便进一步完全燃烧,并形成炉内高温区。高温、充裕的氧量使飞灰等可燃物得到进一步燃烧。是降低qfh4的有效措施。

2CO O2=2CO2

1#、2#炉原设计的二次风分上、下二层,合用一个环形二次风箱。下二次风距布风板

H下=1150mm,上二次风距布风板H上=1850mm。锅炉的密相层高度约为2000mm,上、下二次风均分布在高浓度、压力较高的密相层内。二次风量占燃烧总空气量具~39,出口风速≤40m/s,难以穿透高浓度压力较高的密相层起到两级燃烧的作用,所以炉膛温度如图13所示,远远低于技改后的1#炉及时#炉水平,造成较高Cfh,影响锅炉效率。

这次技改时,将原合用的二次风道适当扩大,并分隔为上、下二个风道,分别供应上、下二次风。专设上、下二次风的单独遥控风门,可分别控制上、下二次风道。

二次风的位置及二次风速大小对炉膛温度及提高锅炉热效率的关系颇大。如3#炉,

H下=3736mm,

H上=7736mm,周围水冷壁全被套卫燃带敷盖,为两级燃烧创造了良好条件,该处形成了炉膛燃烧中心区。1#、2#炉技改时,在钢架许可范围内将下二次风喷咀中心抬高到距布风板H下=1800mm,上二次风喷咀中心距抬高到距布风板H上=2700mm。

上、下排二次风全部装置在前、后墙上。上排二次风前墙装置11个,后墙装置12个。下排二次风前墙装置10个,后墙装置11个。总共44个,全部由lcr18Ni9Ti加工成Φ76×5喷咀。喷咀总流通量截面0.1505m2。在同一截面上,前、后二次风交叉布置,并全部下倾15℃,使炉风形成多个涡旋区。

5.2.2.3一、二次风调整试验

技改后,根据3#炉试验及CFBC锅炉二级燃烧的特点,2#炉先进行一次风率的试验。“低过”出口听(O162),分别保持4.25、5.03、5.50、6.15(相应)的排烟apy为1.304、1.37、1.40、1.46。试验结果如图14所示,当apy=1.37(O162=5.15)时Cfh最小,锅炉热效率η=88.86。从炉膛温度水平也反映出3#炉及技改后1#炉,其炉内温度分布要比技改2#炉合理得多(图15),燃烧中心区的温度水平要高出100℃以上。这对降低qfh提高锅炉热效率是很有效的举措。

图142#炉过剩空气优化试验图15炉膛内温度分析

上、下二次风比试验

从技改后1#、2#炉(3#炉也有相似情况)上、下二次风配比试验中了解到(图16),上排二次风全开(Y上100、Y下60)或下排二次风全开(Y下100、Y上60)对炉膛温度颁及效率影响还是比较明显的,Y上100工况的炉温,在炉膛中心区要比Y下100工况高出50℃以上,Cfh减少~3,η增加~3。此时上排二次风的出口速度达到130m/s,下排二次风出口速度120m/s。

图16上、下二次风不同开度对炉影响炉膛温度水平高以后,对降低Cfh含量提高锅炉热效率的作用是明显的。图17是3#炉调试结果数据,当θ保持900℃以上时,Cfh可保持8以下,锅炉效率达到90左右。

以上试验最佳工况时,上二次风门开度100,下二次风门开度65。

图173#炉膛平均温度与Cfh及η关系

6环境保护

燃煤火力发电厂对环境最大的妨碍主要是灰、渣及排烟中的粉尘、NOX、SO2浓度。现燃烧后的炉渣及飞灰已被附近砖瓦厂全部取走作砖、瓦的原料之一。有些地方CFBC锅炉电厂附近有水泥厂,则CFBC锅炉的灰、渣是最好的水泥渗合原料。价格达30元/吨。

火电厂灰渣对环境保护的影响,对我公司来讲已完全解决。这在缺乏耕田的南方来讲是很珍贵的成就。

如前所述,CFBC锅炉具有低温(1000℃以下)、两级燃烧、飞灰多次返炉内循环燃烧的特点,这是高效燃烧的重要手段,也是环境保护的良好方法。900℃左右的烟温、二级燃烧方式是脱硫效果最高、抑制NOX生成最佳措施。1999年2月,在1#炉技改完毕、运行调试结束后,请苏州市和吴县市环保局对正在投运的1#和3#炉的排烟,作烟尘和二氧化硫

(表9)、氮氧化物(表10)监测。

表9烟尘二氧化硫监测结果

监测点位

烟气流量Nm3/h

烟尘

SO2

烟气黑度林格曼级

折算浓度★mg/m3平均排放速率kg/h折算浓度★★mg/m3品均排放速率t/h范围均值范围均值1号炉

98780

178.3-211.4

198.9

19.6

612-640

626

0.0618

1

3号炉

108438

1492-182.9

160.7

16.4

612-650

631

0.0648

1

验收标准

-

350

 

-

 

 

0.856

1

对照标准-350-0.9561备注

★折算浓度C=C·K(〖SX(〗α1.7〖SX)〗)。C为实测浓度,高循环倍率流化床炉型折

★★S02排放标准Q=PVHQ0·10-6排放控制系数P取7.460。

烟囱出口处平均输送风速度V=V10(〖SX(〗HS10)0.15烟囱有效高度He=Hs △H,Hs为烟囱的几何高度,△H为烟气抬升高度,根据该气烟气热释放率OH,△H=0.29Q3/5HHe2/5V;地区扩散条件指数m取1.893

10氮氧化物排放监测结果

监测点位

NOX

排放浓度mg/m3

平均排放速率kg/h

范围

均值

1号炉

265.3-347.9

269.0

24.7

3号炉

193.2-302.7

250.4

32.1

苏州、吴县环保监测站在对1#、3#炉的排烟测量后,作如下评价:

监测结果评价

由监测结果可以看出,在目前生产规模及有关设施正常运行的情况下,该公司1#锅炉的烟尘折算排放浓度范围为178.3-211.1mg/m3;3#炉锅炉范围为149.2-182.9mg/m3,平均值为160.7mg/m3;整个项目的SO2的排放速率为0.1302kg/h;排烟黑度为1林格曼级。废气排放均符合相应的标准限值,该建设基础上所采取的废气治理措施取得了良好的治理效果,达到环保管理部门的要求。

现场勘查表明,该项目废气排放口无排污标志。

7初步结论

7.11#、2#炉通过技改和调试,摆脱了原来的运行状态,发挥了CFBC锅炉的二级燃烧特点,锅炉出的力,效率均已达到制造厂铭牌参数,并且有一定的超负荷能力,技改取得圆满成功。

7.22#炉低过后O2控制在5,二次风率52-53,Cfh可降到9左右,锅炉效率达到88.16。上排二次风门全开,下排二次风门开度65,此时二次风速可达120~130m/s。1#炉在相近工况下Cfh可降到8以下,炉效到89.15。7.3与1#炉相比,2#炉Cfh较高,可能原因是卫燃带尚嫌不够,可考虑适当增高。附图一是3#炉床高、二次风口高、围燃带高的示意图,希望在围燃带区形成炉膛高温区,有利于CD及C粒的燃说;防止高浓度床料对水冷壁磨损,防止CO还原气氛对水冷壁腐蚀。1#、2#炉因炉膛高度不足,设置卫燃带要考虑炉膛出口烟温不能太高。2#炉空予器漏风还存在,增加了排烟热损失q2否则炉效还会高一些。

7.4对流管束磨损明显减轻,1#炉技改后已运行一年多,省煤器、低过情况良好。高过区炉顶虽然加高,因一级分离百叶窗位置限制,上部形成烟气死区,因此高过区烟速下降有限,高过前后排仍存在不同程度磨损,现采用护瓦防护,能满足安全运行的需要。

7.5通过技术改造及燃烧调整,炉效可提高3-4,年节煤~3400T,折合人民币70万元,加上灰、渣可有效利用,约三年可收回投资。

7.63#炉已经运行二年多,未发现对流受热面磨损,该炉出力足、炉效高,但美中不足是厂用电较大,根据本厂燃煤情况,一次风机风压余量过大,我们正在着手进行技改,在减少一次风机厂用电量并停用罗茨风机(返料风用一次风代替)后,3#炉辅机用电量将会大幅度降低。

来源:中国电站集控运行技术网
友情链接
北极星工程招聘网北极星电气招聘网北极星火电招聘网北极星风电招聘网北极星水电招聘网北极星环保招聘网北极星光伏招聘网北极星节能招聘网招标信息分类电子资料百年建筑网PLC编程培训

广告直拨:   媒体合作/投稿:陈女士 13693626116

关于北极星 | 广告服务 | 会员服务 | 媒体报道 | 营销方案 | 成功案例 | 招聘服务 | 加入我们 | 网站地图 | 联系我们 | 排行

京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案

网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号

Copyright © 2022 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有