首页专业论文技术应用政策标准解决方案常用资料经验交流教育培训企业技术专家访谈电力期刊
您现在的位置:北极星电力网 > 技术频道 > 专业论文 > 电力负荷的谐波建模

电力负荷的谐波建模

北极星电力网技术频道    作者:电力论文3   2007/12/24 18:45:52   

 关键词:  电力负荷 谐波

摘 要:电力负荷的谐波响应可以用其集总效应来描述。文章叙述了电力负荷谐波建模的研究现状;提出了通用谐波模型和利用系统辨识技术建立电力负荷谐波模型的新方法。通过对星形和三角形不同联接方式下负荷模型的分析,导出了描述三相负荷集总效应的数学表达式,并将单相负荷谐波的建模方法推广到三相负荷谐波建模。用一虚拟算例说明了三相负荷谐波建模过程中应当注意的问题。
  关键词:电力负荷;系统辨识;集总效应;电力系统



1引言
  电力负荷谐波模型与变压器、发电机和输电线路等基本电气元件一样,对分析网络谐波具有重要意义。电力负荷的谐波特性最早是用无源阻抗模型来描述的,如国际大电网会议电磁兼容工作组(CIGREWG36-05)提出的负荷模型就是通过对基波等效阻抗的简单修正来模拟电力负荷的谐波响应[1],曾应用于不少网络谐波分析程序[2~4]。但这种模型忽略了可能的负荷群谐波产生效应,因此非常不适用于现代电网中小容量非线性负荷不断增加的情况。
  1989年,T.Hiyama提出了电力负荷的有源模型,并用于研究配电网的谐波扩散问题[5]。国际大电网会议于1996年阐明了建立负荷有源模型的必要性[6]。理论上通用的负荷谐波模型则是由E.A.Markram于1993年提出的[7]。1997年,S.A.Soliman等人提出了利用负荷电压和电流采样值进行模型参数辨识的时域状态估计技术[8]。1999年,E.Thunberg等人提出了配电网建模的诺顿等效法[9],为电力负荷的有源模型找到了理论依据。
本文的工作是在S.A.Soliman等人研究成果的基础上进行的,主要讨论了负荷模型的基本结构和统一参数辨识方法,并尝试将其推广到三相电力系统负荷谐波建模。

2单相负荷的谐波建模
2.1负荷建模的状态估计算法

  电力负荷是由阻、感、容性元件通过配电线路互连而构成的复杂的电网络,因此其集总效应可以利用一组并联的等效阻、感、容性元件进行模拟。非线性负荷的谐波产生效应,可用伴随的谐波注入电流源进行模拟。但是,为了提高网络计算的收敛性,常将电流源改写成诺顿等效电路的形式。建立电力负荷模型的困难常常反映在对各种负荷形式中阻性元件集肤效应和邻近效应的模拟。国际大电网会议谐波工作组对此已有具体描述[6],但在具体建模过程中需要详细统计各种负荷类型的实际组成。一般来说,电力负荷的集总效应可以等效为图1所示的电网络。

  图1中,u(t)和i(t)为配电母线电压和负荷电流的瞬时值;R、L和C为负荷中的阻性、感性和
容性成分;ij(t)为由谐波交叉耦合导致的谐波电流注入分量,这与文献[7]中定义的残余电流和非共次谐波电流有本质的区别。
根据图1可以得出

流中的阻、感、容性分量和非线性负荷的谐波交叉耦合效应。
  可将式(1)写成以R、L、C和ij(t)等参数描述的形式。即
  
对上式两边求导,可得
  
式中Ah和Bh为谐波注入电流正弦分量和余弦分量的幅值。
  对于一定的负荷群,参数Ah和Bh可以被认为基本上是常数。显然,如果将这些参数也看成同R、L、C一样描述负荷特性的物理参数,则通过端口电压和负荷电流的一组采样值,就能将这些参数识别出来。


  假设母线电压和负荷电流的傅立叶级数的形式如式(5)和(6)所示,即
  
式中N为所考虑的最高次谐波次数;Uh和Ih为h次谐波电压和电流的幅值;ah和Bh为h次谐波电压和电流的初相位。
  式(3)可改写成矩阵形式
  
  以一定的采样频率同时对母线电压和负荷电流的导数进行采样,则有
  
  显然,只要在一个周期内的采样点数足够多,状态矢量便可以被辨识出来。这就是负荷建模算法的基本思想。
2.2数据集的最小二乘处理
  将式(10)写成矩阵形式并考虑到量测噪声的影响,则有
   
式中Z为由电流导数的采样值构成的量测矢量;H为量测矩阵;X为待定的状态矢量;ε为量测噪声矢量。
  为了获得更好的估计效果,实际建模过程中采样点数往往大于状态变量的个数,因此量测矩阵是一超定矩阵,上述的负荷建模问题最终也归结为一最小二乘问题。
  根据最小二乘法的基本理论,此时状态变量的最优估计值为
  
  由于量测矩阵的元素为系统运行参数或其导数的采样值,在电压、电流波形畸变不太严重的情况下,矩阵(HTH)-1往往是奇异或接近于奇异的,因此采用常规方法求解式(12)时往往很难得到合理的计算结果。奇异值分解技术具有很高的可靠性,数值计算非常稳定,是求解矩形超定方程的有力工具。文献[10]介绍了这种技术在谐波分析方面的应用实例。关于利用奇异值分解技术求解最小二乘问题的具体方法,可以参见文献[11]。Matlab语言也提供了求解这类问题的函数。本文提出的理论和算法可以利用这一工具进行验证。
  当采样频率很高时,电压、电流的导数可写成采样值的差分方程形式,因此式(7)可变为
  
式中 l表示采样顺序。
  由于上述方程的量测矢量仅同采样值有关,省略了中间复杂的求导运算,因此上述建模过程可以大为简化。

3三相系统的负荷建模
3.1三相负荷的数学模型

3.1.1三角形联接方式下负荷的数学模型

  图2为三角形联接方式下三相负荷的等效模型。对3个顶点列节点电压方程,则有
  
  式(15)表示三相伴随电流源。
3.1.2星形联接方式下三相负荷的数学模型
图3为星形联接方式下三相负荷的等效模型。对中性点列节点电压方程,则有
  
因此
  

  根据图3可直接写出星形负荷的相坐标模型
  
当中性点对地绝缘时,则有
  
  当中性点直接接地时,Yn为有限值,主要考虑大地回路的影响。
  由式(14)和(19)可以看出,三相负荷的集总效应可用一对称的导纳矩阵和伴随的注入电流源来表达。即
  
  显然,这一模型需用6个电气常数共18个电气元件(电阻、电感和电容各6个)和3个运行参数(伴随电流源)来描述。
3.2三相负荷的谐波建模
  将三相负荷中的电阻、电感和电容元件的集总效应分别用3个3*3维的对称矩阵描述。即有
  
  
因此有
  

定义
  
式中 Ah、Bh均为3*1维的状态矢量。
  对式(25)两边同时取转置并计及电气参数矩阵的对称性,则有
  
对上式两边求导,则有
  
  
  以一定的采样频率同时对三相负荷电流的导数和母线三相电压及其二阶变化率采样,只要采样频率足够高,这些状态变量便可以被辨识出来。

4算例研究
4.1负荷数据

  单相负荷谐波建模过程的困难一般较小,本文算法可以用文献[12]提供的算例进行验证。三相负荷的谐波建模则比较困难,因此用一虚拟的算例对三相负荷谐波建模过程中可能遇到的问题进行讨论。[FS:PAGE]


  根据假设的负荷参数矩阵和母线电压计算总的负荷电流;在负荷电流和母线电压上叠加以高斯分布的白噪声,利用上述算法辨识负荷电气参数;最后,变更运行参数,比较运行条件对辨识结果的影响。
  假设负荷的电气参数矩阵为
  
配电电压为
  
则虚拟负荷的电流为
  
4.2量测噪声对辨识结果的影响
  分别在负荷电流上叠加幅值为1、10和20的以高斯分布的白噪声,可以算出3种幅值情况下的辨识结果依次为
  
  

  可以看出,随着噪声水平的增大,估计参数误差也增大,且阻性参数的估计误差远大于感性参数的估算误差。其主要原因在于感性电流的数值较大,量测噪声对两种不同性质的电流产生的影响也不同。同时,也可看到估计出的参数矩阵失去了对称性,这是由于叠加的噪声信号具有随机性和计算程序对模型参数估计是分相进行的缘故。
4.3对称性对辨识结果的影响
  波形畸变是导致三相不对称的重要原因。本文通过逐步忽略高次谐波的办法研究了运行条件对估计结果的影响。下面依次给出了忽略3次和5次谐波电压条件下的估计参数矩阵。
  

  可以看出,似乎系统运行条件不平衡度越严重,估计结果越趋于合理。这可能与运行参数采样值之间的强相关性有关,采样点数的某种不确定性倒有可能会给出令人满意的估计结果。

5结束语
  电力负荷谐波模型对分析网络谐波的结果具有重要影响。电力负荷谐波响应的基本特点在于它的集总效应。文章叙述了电力负荷谐波建模的研究现状,提出了电力负荷的通用谐波模型和利用系统辨识技术建立电力负荷谐波模型的新方法。通过对各种负荷形式数学模型的分析,文章导出了描述三相负荷集总效应的数学表达式,并尝试将单相负荷的建模方法推广到三相负荷谐波建模。最后,利用一虚拟的算例说明了三相负荷谐波建模过程中应当注意的问题。


参考文献


[1]CIGREWorkingGroup36-05.Harmonics,characteristicparameters,methodsofstudy,estimatesofexistingvaluesinthenetwork[J].Electric,1981,(77):35-54.
[2]DensemTJ,BodgerPS,ArrillagaJ.Threephasetransmissionsystemmodelingforharmonicpenetrationstudies[J].IEEETransonPowerApparatusandSystems,1984,103(2):310-317.
[3]SharmaV,FlemingRJ,NiekampL.Aniterativeapproachforanalysisofharmonicpenetrationinthepowertransmissionnetworks[J].IEEETransonPowerDelivery,1991,6(4):1698-1706.
[4]MarinosZA,PereiraJLR,CarnerioSJr.Fastharmonicpowerflowcalculationusingparallelprocessing[J].IEEProceedingsonGeneration,TransmissionandDistribution,1994,141(1):27-32.
[5]HiyamaT,HammamMSAA,OrtmeyerTH.Distributionsystemmodelingwithdistributedharmonicsources[J].IEEETransonPowerDelivery,1989,4(2):1297-1304.
[6]CIGREWorkingGroup36-05.ACsystemmodelingforACfilterdesign—anoverviewofimpedancemodeling[J].Electra,1996,(164):133-151.
[7]MakramEB,VaradanS.Ageneralizedloadmodelingtechniqueusingactualrecordeddataanditsuseinaharmonicloadflowprogram[J].ElectricPowerSystemResearch,1993,27:203-208.


[8]SolimanSA,Al-KandariAM,El-HawaryME.Timedomainestimationtechniquesforharmonicloadmodel[J].ElectricMachinesandPowerSystems,1997,25(6):885-896.
[9]ThunbergE,SoderL.ANortonapproachtodistributionnetworkmodelingforharmonicstudies[J].IEEETransactionsonPowerDelivery,1999,14(1):272-277.
[10]OsowskiS.SVDtechniqueforestimationofharmoniccomponentsinapowersystem:astatisticalapproach[J].IEEProceedingsofGenerationTransmissionandDistribution,1994,141(4):473-479.
[11]陈自宽,母国光(ChenZikuan,MuGuoguang).相关数据集的最小二乘处理方法(Ageneralizedmethodtosolvetheleast-square-errorploblemforalinearly-dependentdataset)[J].数据采集与处理(JournalofDataAcquisition&Processing),1996,11(1):66-68.
[12]SolimanSA,ChristensenGS,KellyDHetal.Astateestimationalgorithmforidentificationandmeasurementofpowersystemharmonics[J].ElectricPowerSystemResearch,1990,19:195-206.

来源:中国电能质量
嗨,快来啊!光看电力文章太乏味,82万电力人喊你一起来探讨,点此进入最火电力论坛!
北极星电力网为广大电力人士打造的期刊分享平台正式上线啦!文章发表,杂志订阅全部免费啦!
投稿热线:010-52898473

>>更多 热门电气招聘公告

《电力负荷的谐波建模》的相关文章

《电力负荷的谐波建模》的相关新闻

>>更多推荐文章
>>更多专业论文
>>更多应用与方案
>>更多企业技术
友情链接
北极星工程招聘网北极星电气招聘网北极星火电招聘网北极星风电招聘网北极星水电招聘网北极星环保招聘网北极星光伏招聘网北极星节能招聘网招标信息分类电子资料百年建筑网PLC编程培训

广告直拨:   媒体合作/投稿:陈女士 13693626116

关于北极星 | 广告服务 | 会员服务 | 媒体报道 | 营销方案 | 成功案例 | 招聘服务 | 加入我们 | 网站地图 | 联系我们 | 排行

京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案

网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号

Copyright © 2022 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有