首页专业论文技术应用政策标准解决方案常用资料经验交流教育培训企业技术专家访谈电力期刊
您现在的位置:北极星电力网 > 技术频道 > 专业论文 > 低压电力线载波通信的接口电路设计

低压电力线载波通信的接口电路设计

北极星电力网技术频道    作者:仲元昌,曾孝平   2004/3/29 0:00:00   

    摘  要:为了利用低压电力线实现可靠的载波通信,接口电路的设计是问题的关键。其难点在于:一方面,要求载波信号的加载效率高;另一方面,要求电力网50 Hz的工频信号不能给载波通信系统带来太大的干扰。为此,采用了“电磁耦合”与“阻容耦合”相结合的“复合耦合技术”,很好地解决了这一难题。基于这种“复合耦合技术”,分析并设计了“低压电力线载波通信的接口电路”。仿真结果和实验结果表明:该接口电路既有较高的载波信号加载效率,又能完全地隔离电力网50 Hz的工频信号。因此,该接口电路可广泛应用于低压电力线通信系统。
      关键词:载波通信;低压电力线;接口电路;设计

一、前言
    电力线通信,简称PLCPower Line Communication),是以电力网作为信道进行载波通信的一种有线通信方式。电力线载波通信与其他通信方式相比,能充分利用现有的电力线资源,即利用电力线进行通信,实现信息的传输。因而,电力线通信具有很好的开发前景和应用价值[1]
    最近,英国在电力线媒介开发方面取得了突破性进展,用户可通过电力线进入Internet,它从简单的数据传输提高到了网络联接。法国已推出了电力线调制解调器集成电路,使住宅智能化产品向市场化方向进一步推进。电力线通信目前在欧洲(德国、英国、瑞典等)发展得较快。德国与英国是目前世界上唯一制定电力线通信规则的国家[2]。中国电力系统已组建国电通信中心,并向信息产业部正式申请了牌照。国家电力公司计划在2015年建成全国统一的联合电力网通信系统,其前景极其可观。
   
但是,低压电力线是一种通信环境非常恶劣的信道,有许多问题有待进一步研究[3]。低压电力线传送着220 V/50 Hz的电能,在低压电力线上并接了许多不同阻抗的用电器。低压电力线的这一固有特点,给低压电力线通信带来了很大的困难[4]。因此,低压电力线通信必须首先解决以下两个难题:
    (1)电力网50 Hz的工频信号不能给载波通信系统带来太大的干扰;同时,考虑到整个通信系统的安全,必须进行强电隔离;
    (2)低压电力线上并接的所有用电器的“统计载波阻抗”要高,以确保较高的载波信号加载效率。
   
上述问题,正是低压电力线通信的接口技术问题,下面从这两方面介绍其设计原理和实现方法。
二、接口电路的模型
    根据低压电力线通信接口技术的要求:一方面,必须进行强电隔离;另一方面,要确保较高的载波信号加载效率。为此,必须采用“电磁耦合”与“阻容耦合”相结合的“复合耦合技术”,其接口电路模型如图1所示。

    该电路的关键物理量是2个回路中的电流i1(t)it)。由基尔霍夫第二定律可得出该电路的数学模型:

    对(1)式,通过不同的处理将得到不同的数学模型。对图1所示的双RLC耦合回路进行去耦处理,得到2个独立的RLC串联回路。对(1)式求导,则可得到二元二阶方程组:

    2)式同时含有2个未知函数i1(t)i2(t)的二阶导数,不便直接求解。
    若将RLC串联回路表示成二元一阶方程,则由2个RLC回路便可得到四元一阶方程组:

    该方程组含有4个未知数:i(t)it)。其定解条件,直接由电路的初始储能情况给出,当无初始储能时,为齐次初始条件,即:

设所有电路元件都是非时变性元件,则所对应的常系数线性一阶常微分方程组,可转化成线性代数方程组进行求解。
三、接口电路的实现
    根据上述的理论分析与建立的数学模型,可设计出低压电力线通信发送端的接口电路,如图2所示。

    在发送电路中,三极管Q1和变压器T1组成调谐功率放大电路。这里谐振变压器T1有着双重作用:一方面,耦合载波信号;另一方面,使通信电路与220 V/50 Hz的强电隔离。在Q1和前级运放之间通过一个电路R1耦合载波信号,这个电阻还可避免后级电路产生自激振荡,此电阻的另一功能是增加放大器的负载阻抗。
    前级运放输出的信号经R1输入到功率放大管Q1,再经Q1和谐振网络组成的单调谐放大器放大耦合到交流电力线上。其调谐回路的谐振频率应满足:

若将中心频率选在460 kHz5,电容取值为22 nF,经计算可得电感L的取值在5.3 μH左右,即通过调节变压器初级绕组电感量来调节中心频率。
    变压器T1将电力线与接口电路的其余部分相隔离,将发送信号送至电力线;从电力线上取接收载波信号;滤除来自电力线上的干扰噪声。
    信号经L1L2C1C2耦合至电力线上,C1C2L1L2组成了带通滤波器,而低压电力线阻抗R具有时变特性。由此,可计算出C1C2L1L2和低压电力线阻抗R组成的双口网络的电压转移函数:

四、接口电路的仿真
    根据该接口电路的电压转移函数,对此双口网络进行了计算机仿真分析。这里,着重分析了在不同的低压电力线阻抗条件下,此带通滤波器的通频带,即该接口电路的频率特性。其频率特性是评价该接口电路耦合性能的一项重要指标。仿真显示了当电力线电阻为2 Ω、5 Ω、10 Ω、15 Ω、30 Ω、50 Ω、100 Ω时,通频带的情况,其频率响应曲线如图3所示。

    从图3的分析结果可见:电力线阻抗越大,接口电路的通频带越宽,对信号的耦合性能就越好,但选择性差;电力线阻抗越小,接口电路的通频带越窄,对信号的耦合性能就越差,但选择性好。经统计分析得知,低压电力线的统计阻抗一般在515 Ω之间[6]。因此,所使用的429503 kHz的信号均在通频带(衰减小于3 dB)范围内,也就是说,以460 kHz作为低压电力线通信接口电路的中心频率是合理的。一方面,满足了载波发射高阻抗的要求,提高了载波的加载效率;另一方面,在满足信号的耦合性能的同时,也兼顾了对频率选择性的要求,从而提高了系统的抗干扰能力。
    在电路的具体安装和调试过程中,通过调节电感磁芯来调节电感量,使通频带达到最佳。电容选用22 nF/450 V,电感量在56 μH之间。
   
关于接收端接口电路的设计,其基本原理和分析方法是相同的,这里不再重述,而直接给出低压电力线接收端接口电路,如图4所示。图4中的二极管D1D2起限幅作用,用来保护后续电路。

    通过实验,发射端接口电路和接收端接口电路都达到了设计要求。应用该接口电路进行低压电力线通信实验,取得了很好的通信效果。
五、结论
    基于“电磁耦合”与“阻容耦合”相结合的“复合耦合技术”,从理论上分析并建立了低压电力线载波通信的接口电路”的数学模型,由此设计了“低压电力线载波通信的接口电路”。仿真结果和实验结果表明,该接口电路既有较高的载波信号加载效率,又能完全地隔离电力网50 Hz的工频信号。因此,该接口电路可广泛应用于低压电力线通信系统。

参考文献

[1]John Newbury William Miller. Multiprotocol Routing for Automatic Remote Meter Reading Using Power Line Carrier Systems J. IEEE TRANSACTIONS ON POWER DELIVERY, 2001,16(1):15.
[2]Manfred Zimmermann Klaus Dostert. Analysis and Modelingof Impulsive Nois in Broad-Band Powerline Communications [J. IEEE TRANSACTIONS ON ELECTROMAGETIC COMPATIBLITY,2002,44(1):249258.
[3]Charles J Kim Mohamed F Chouikha. Attenuation Characteristics of High Rate Home-Networking PLC Signals J. IEEE TRANSACTIONS ON POWER DELIVERY,2002,17(4):945950.
[4]Tian Yew Lim Tat-Wai Chan. Experimenting Remote Kilowatthour Meter Reading Through Low-Voltage Power Lines at Dense Housing Estates [J. IEEE TRANSACTIONS ON POWER DELIVERY,2002,17(3):708711.
[5] Manfred Zimmermann Klaus Dostert. A Multipath Model forthe Powerline Channel J. IEEE TRANSACTIONS ON COMMUNICATIONS,2002,50(4):553559.
[6]J Michael Silva Bruce Whitney. Evaluation of the Potential for PLC to Interfere With Use of the Nationwide Differential GPS Network J. IEEE TRANSACTIONS ON POWER DELIVERY,2002,17(2):348352

来源:电讯技术
友情链接
北极星工程招聘网北极星电气招聘网北极星火电招聘网北极星风电招聘网北极星水电招聘网北极星环保招聘网北极星光伏招聘网国际节能环保网光伏论坛IC资料网压力传感器招标信息分类电子资料

广告直拨:   媒体合作/投稿:陈女士 010-52898473点击这里给我发消息

关于北极星 | 广告服务 | 会员服务 | 媒体报道 | 营销方案 | 成功案例 | 招聘服务 | 加入我们 | 网站地图 | 在线帮助 | 联系我们 |

版权所有 © 1999-2019 北极星电力网(Bjx.Com.Cn) 运营:北京火山动力网络技术有限公司

京ICP证080169号京ICP备09003304号-2 京公网安备 11010502034458号电子公告服务专项备案